With onboard operating systems becoming increasingly common in vehicles, the real-time broadband infotainment and Intelligent Transportation System (ITS) service applications in fast-motion vehicles become ever demanding, which are highly expected to significantly improve the efficiency and safety of our daily on-road lives. The emerging ITS and vehicular applications, e.g., trip planning, however, require substantial efforts on the real-time pervasive information collection and big data processing so as to provide quick decision making and feedbacks to the fast moving vehicles, which thus impose the significant challenges on the development of an efficient vehicular communication platform.In this article, we present TrasoNET, an integrated network framework to provide realtime intelligent transportation services to connected vehicles by exploring the data analytics and networking techniques. TrasoNET is built upon two key components. The first one guides vehicles to the appropriate access networks by exploring the information of realtime traffic status, specific user preferences, service applications and network conditions. The second component mainly involves a distributed automatic access engine, which enables individual vehicles to make distributed access decisions based on access recommender, local observation and historic information. We showcase the application of TrasoNET in a case study on real-time traffic sensing based on real traces of taxis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.