Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus-2 not yet has established its treatment, but convalescent plasma has been expected to increase survival rates as in the case with other emerging viral infections. We describe two cases of COVID-19 treated with convalescent plasma infusion. Both patients presented severe pneumonia with acute respiratory distress syndrome and showed a favorable outcome after the use of convalescent plasma in addition to systemic corticosteroid. To our knowledge, this is the first report of the use of convalescent plasma therapy for COVID-19 in Korea.
Summary Background Identifying the extent of environmental contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for infection control and prevention. The extent of environmental contamination has not been fully investigated in the context of severe coronavirus disease (COVID-19) patients. Aim To investigate environmental SARS-CoV-2 contamination in the isolation rooms of severe COVID-19 patients requiring mechanical ventilation or high-flow oxygen therapy. Methods We collected environmental swab samples and air samples from the isolation rooms of three COVID-19 patients with severe pneumonia. Patient 1 and Patient 2 received mechanical ventilation with a closed suction system, while Patient 3 received high-flow oxygen therapy and noninvasive ventilation. Real-time reverse transcription polymerase chain reaction (rRT-PCR) was used to detect SARS-CoV-2; viral cultures were performed for samples not negative on rRT-PCR. Findings Of the 48 swab samples collected in the rooms of Patient 1 and Patient 2, only samples from the outside surfaces of the endotracheal tubes tested positive for SARS-CoV-2 by rRT-PCR. However, in Patient 3’s room, 13 of the 28 environmental samples (fomites, fixed structures, and ventilation exit on the ceiling) showed positive results. Air samples were negative for SARS-CoV-2. Viable viruses were identified on the surface of the endotracheal tube of Patient 1 and seven sites in Patient 3’s room. Conclusion Environmental contamination of SARS-CoV-2 can be a route of viral transmission. However, it might be minimized when patients receive mechanical ventilation with a closed suction system. These findings can provide evidence for guidelines for the safe use of personal protective equipment.
Background: The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a major global public health issue. SARS-CoV-2 infection is confirmed by the detection of viral RNA using reverse transcription polymerase chain reaction (RT-PCR). Prolonged viral shedding has been reported in patients with SARS-CoV-2 infection, but the presence of viral RNA does not always correlate with infectivity. Therefore, the present study aimed to confirm the presence of viable virus in asymptomatic or mildly symptomatic patients in the later phase of the disease, more than two weeks after diagnosis. Method: Asymptomatic or mildly symptomatic COVID-19 patients who had been diagnosed with the disease at least two weeks previously and admitted to a community treatment center (CTC) from 15 March to 10 April 2020 were enrolled in this study. Nasopharyngeal and salivary swab specimens were collected from each patient. Using these specimens, RT-PCR assay and viral culture were performed. Result: In total, 48 patients were enrolled in this study. There were no significant differences in baseline characteristics between the asymptomatic and mildly symptomatic patient groups. RT-PCR assay and viral culture of SARS-CoV-2 were performed using nasopharyngeal and salivary swabs. The results of RT-PCR performed using salivary swab specimens, in terms of cycle threshold (Ct) values, were similar to those of RT-PCR using nasopharyngeal swab specimens. In addition, no viable virus could be cultured from swab specimens collected from the late-phase COVID-19 patients with prolonged viral RNA shedding. Conclusions: In conclusion, our study suggests that even if viral shedding is sustained in asymptomatic or mildly symptomatic patients with later phase of COVID-19, it can be expected that the transmission risk of the virus is low. In addition, saliva can be used as a reliable specimen for the diagnosis of SARS-CoV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.