In bone marrow transplantation (BMT), bone marrow cells (BMCs) have traditionally been injected intravenously. However, remarkable advantages of BMT via the intrabone-marrow (IBM) route (IBM-BMT) over the intravenous route (IV-BMT) have been recently documented by several laboratories. To clarify the mechanisms underlying these advantages, we analyzed the kinetics of hemopoietic regeneration after IBM-BMT or IV-BMT in normal strains of mice. At the site of the direct injection of BMCs, significantly higher numbers of donor-derived cells in total and of c-kit 貕 cells were observed at 2 through 6 days after IBM-BMT. In parallel, significantly higher numbers of colony-forming units in spleen were obtained from the site of BMC injection. During this early period, higher accumulations of both hemopoietic cells and stromal cells were observed at the site of BMC injection by the IBM-BMT route. The production of chemotactic factors, which can promote the migration of a BM stromal cell line, was observed in BMCs obtained from irradiated mice as early as 4 hours after irradiation, and the production lasted for at least 4 days. In contrast, sera collected from the irradiated mice showed no chemotactic activity, indicating that donor BM stromal cells that entered systemic circulation cannot home effectively into recipient bone cavity. These results strongly suggest that the concomitant regeneration of microenvironmental and hemopoietic compartments in the marrow (direct interaction between them at the site of injection) contributes to the advantages of IBM-BMT over IV-BMT. STEM CELLS
Mesenchymal stem cells (MSCs) are defined as cells that can differentiate into multiple mesenchymal lineage cells. MSCs have some features (surface molecules and cytokine production, etc.) common to so-called traditional bone marrow (BM) stromal cells, which have the capacity to support hemopoiesis. In the present study, we isolated murine MSCs (mMSCs) from the fetal BM using an anti-PA6 monoclonal antibody (mAb) that is specific for bone marrow stromal cells. The mMSCs, called FMS/PA6-P cells, are adherent, fibroblastic, and extensively expanded and have the ability to differentiate not only into osteoblasts and adipocytes but also into vascular endothelial cells. The FMS/PA6-P cells produce a broad spectrum of cytokines and growth factors closely related to hemopoiesis and show good hemopoiesis-supporting capacity both in vivo and in vitro, suggesting that they are a component of the hemopoietic stem cell niche in vivo. Interestingly, although the FMS/PA6-P cells express a high level of the PA6 molecule, which is reactive with anti-PA6 mAb, they gradually lose their ability to express this molecule during the course of differentiation into osteoblasts and adipocytes, indicating that the PA6 molecule might serve as a novel marker of mMSCs. STEM CELLS 2006;24: 482-493
To clarify mechanisms underlying cell-to-cell interactions between hemopoietic stem cells (HSCs) and stromal cells, we established a stromal cell line (FMS/PA6-P) from day-16 fetal bone marrow (BM) adherent cells using an anti-PA6 monoclonal antibody (mAb) specific for BM stromal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.