The milestone of GW 170817-GRB 170817A-AT 2017gfo 1 has shown that gravitational wave (GW) is produced during the merger of neutron star-neutron star/black hole and that in electromagnetic (EM) wave a gamma-ray burst (GRB) and a kilonovae (KN) are generated in sequence after the merger. Observationally, however, EM property during a merger is still unclear. Here we report a peculiar precursor in a KN-associated long GRB 211211A. The duration of the precursor is ∼ 0.2 s, and the waiting time between the precursor and the main emission (ME) of the burst is ∼ 1 s, which is about the same as the time interval between GW 170817 and GRB 170817A. Quasi-Periodic Oscillations (QPO) with frequency ∼22 Hz (at > 5σ significance) are found throughout the precursor, the first detection of periodic signals from any bona fide GRBs. This indicates most likely that a magnetar participated in the merger, and the precursor might be produced due to a catastrophic flare accompanying with torsional or crustal oscillations of the magnetar. The strong seed magnetic field of ∼ 10 14−15 G at the surface of the magnetar may also account for the prolonged duration of GRB 211211A. However, it is a challenge to reconcile the rather short lifetime of a magnetar
The Insight-Hard X-ray Modulation Telescope (Insight-HXMT) is a broad band X-ray and gamma-ray (1-3000 keV) astronomy satellite. The High Energy X-ray telescope (HE) is one of its three main telescopes. The main detector plane of HE is composed of 18 NaI(Tl)/CsI(Na) phoswich detectors, where NaI(Tl) serves as primary detector to measure ~ 20-250 keV photons incident from the field of view (FOV) defined by the collimators, and CsI(Na) is used as an active shield detector to NaI(Tl) by pulse shape discrimination. CsI(Na) is also used as an omnidirectional gamma-ray monitor. The HE collimators have a diverse FOV: 1.1°x 5.7° (15 units), 5.7°x 5.7° (2 units) and blocked (1 unit), thus the combined FOV of HE is about 5.7°x 5.7°. Each HE detector has a diameter of 190 mm, resulting in the total geometrical area of about 5100 cm 2 . The energy resolution is ~15% at 60 keV. The timing accuracy is better than 10 μs and dead-time for each detector is less than 10 μs. HE is devoted to observe the spectra and temporal variability of X-ray sources in the 20-250 keV band either by pointing observations for known sources or scanning observations to unveil new sources, and to monitor the gamma-ray sky in 0.2-3 MeV. This paper presents the design and performance of the HE instruments. Results of the on-ground calibration experiments are also reported.
The Medium Energy X-ray telescope (ME) is one of the three main telescopes on board the Insight hard X-ray modulation telescope (Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive in 5-30 keV with a total geometrical area of 952 cm 2 . The application specific integrated circuit (ASIC) chip, VA32TA6, is used to achieve low power consumption and low readout noise. The collimators define three kinds of field of views (FOVs) for the telescope, 1°×4°, 4°×4°, and blocked ones. Combination of such FOVs can be used to estimate the in-orbit X-ray and particle background components. The energy resolution of ME is~3 keV at 17.8 keV (FWHM) and the time resolution is 255 μs. In this paper, we introduce the design and performance of ME.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.