A novel and highly pathogenic coronavirus (2019-nCoV)-induced pneumonia spread worldwide in a short time. However, studies on the effects of 2019-nCoV on the male reproductive system are limited. The aim of this study is to describe the clinical characteristics of the male reproductive system of COVID-19 patients and to explore the presence of 2019-nCoV in semen. Retrospective, single-center case series of 112 male patients with confirmed COVID-19 who were admitted to Renmin Hospital of Wuhan University from January 2 to March 7, 2020. Demographic data, symptoms and signs related to the male reproductive system, throat swabs and semen samples were collected and analyzed. 2019-nCoV RNA measured in throat swab and semen samples. The organ distribution of ACE2 mRNA and protein in human tissue on The Human Protein Atlas portal and investigated immunohistochemistry (IHC) images of the testis. The HPA dataset revealed relatively high levels of ACE2 protein and RNA expression in the testis. A total of 3 severe COVID-19 patients (2.7%) presented with orchidoptosis, while no patients experienced other symptoms or signs related to the male reproductive system. The analysis of 2019-nCoV RNA in semen included 17 patients with fertility needs. Among these patients, 9 (52.9%) remained positive for 2019-nCoV according to throat swab analysis, and 8 (47.1%) became negative. In the semen 2019-nCoV analysis, all 17 patients were negative for the N gene and ORF1ab gene. In view of the potential impairment, long-term follow-up for male COVID-19 patients with fertility needs is of great significance.
Ferroptosis, a novel form of regulated cell death characterized by disrupted iron metabolism and the accumulation of lipid peroxides, has exhibited enormous potential in the therapy of cancer particularly clear cell renal cell carcinoma (ccRCC). Luteolin (Lut), a natural flavonoid widely existing in various fruits and vegetables, has been proven to exert potent anticancer activity in vitro and in vivo. However, previous studies on the anticancer mechanism of Lut have been shown in apoptosis but not ferroptosis. In the present study, we identified that Lut substantially inhibited the survival of ccRCC in vitro and in vivo, and this phenomenon was accompanied by excessively increased intracellular Fe2+ and abnormal depletion of GSH. In addition, Lut induced the imbalance of mitochondrial membrane potential, classical morphological alterations of mitochondrial ferroptosis, generation of ROS, and occurrence of lipid peroxidation in an iron-dependent manner in ccRCC cells. However, these alterations induced by Lut could be reversed to some extent by the iron ion chelator deferiprone or the ferroptosis inhibitor ferrostatin-1, indicating that ccRCC cells treated with Lut underwent ferroptosis. Mechanistically, molecular docking further established that Lut probably promoted the heme degradation and accumulation of labile iron pool (LIP) by excessively upregulating the HO-1 expression, which led to the Fenton reaction, GSH depletion, and lipid peroxidation in ccRCC, whereas blocking this signaling pathway evidently rescued the Lut-induced cell death of ccRCC by inhibiting ferroptosis. Altogether, the current study shows that the natural compound monomer Lut exerted anticancer efficacy by excessively upregulating HO-1 expression and activating LIP to trigger ferroptosis in ccRCC and could be a promising and potent drug candidate for ccRCC treatment.
The regulation of renal function by circadian gene BMAL1 has been recently recognized; however, the role and mechanism of BMAL1 in renal ischaemia-reperfusion injury (IRI) are still unknown. The purpose of this study was to clarify the pathophysiological role of BMAL1 in renal IRI. We measured the levels of BMAL1 and mitochondrial biogenesis-related proteins, including SIRT1, PGC-1α, NRF1 and TFAM, in rats with renal IRI. In rats, the level of BMAL1 decreased significantly, resulting in inhibition of SIRT1 expression and mitochondrial biogenesis. In addition, under hypoxia and reoxygenation (H/R) stimulation, BMAL1 knockdown decreased the level of SIRT1 and exacerbated the degree of mitochondrial damage and apoptosis.Overexpression of BMAL1 alleviated H/R-induced injury. Furthermore, application of the SIRT1 inhibitor EX527 not only reduced the activities of SIRT1 and PGC-1α but also further aggravated mitochondrial dysfunction and partially reversed the protective effect of BMAL1 overexpression. Moreover, whether in vivo or in vitro, the application of SIRT1 agonist resveratrol rescued the mitochondrial dysfunction caused by H/R or IRI by activating mitochondrial biogenesis. These results indicate that BMAL1 is a key circadian gene that mediates mitochondrial homeostasis in renal IRI through the SIRT1/PGC-1α axis, which provides a new direction for targeted therapy for renal IRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.