Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Liver fibrosis is an abnormal wound repair response caused by a variety of chronic liver injuries, which is characterized by over-deposition of diffuse extracellular matrix (ECM) and anomalous hyperplasia of connective tissue, and it may further develop into liver cirrhosis, liver failure or liver cancer. To date, chronic liver diseases accompanied with liver fibrosis have caused significant morbidity and mortality in the world with increasing tendency. Although early liver fibrosis has been reported to be reversible, the detailed mechanism of reversing liver fibrosis is still unclear and there is lack of an effective treatment for liver fibrosis. Thus, it is still a top priority for the research and development of anti-fibrosis drugs. In recent years, many strategies have emerged as crucial means to inhibit the occurrence and development of liver fibrosis including anti-inflammation and liver protection, inhibition of hepatic stellate cells (HSCs) activation and proliferation, reduction of ECM overproduction and acceleration of ECM degradation. Moreover, gene therapy has been proved to be a promising anti-fibrosis method. Here, we provide an overview of the relevant targets and drugs under development. We aim to classify and summarize their potential roles in treatment of liver fibrosis, and discuss the challenges and development of anti-fibrosis drugs.
Antibody–drug conjugates (ADCs) take the advantage of monoclonal antibodies to selectively deliver highly potent cytotoxic drugs to tumor cells, which have become a powerful measure for cancer treatment in recent years. To develop a more effective therapy for human epidermal growth factor receptor 2 (HER2)-positive cancer, we explored a novel ADCs composed of anti-HER2 scFv–HSA fusion antibodies conjugates with a potent cytotoxic drug DM1. The resulting ADCs, T-SA1–DM1 and T-SA2–DM1 (drug-to-antibody ratio in the range of 3.2–3.5) displayed efficient inhibition in the growth of HER2-positive tumor cell lines and the half-maximal inhibitory concentration on SKBR-3 and SKOV3 cells were both at the nanomolar levels in vitro. In HER2-positive human ovarian cancer xenograft models, T-SA1–DM1 and T-SA2–DM1 also showed remarkable antitumor activity. Importantly, three out of six mice exhibited complete remission without regrowth in the high-dose group of T-SA1–DM1. On the basis of the analysis of luminescence imaging, anti-HER2 scFv–HSA fusion antibodies, especially T-SA1, showed strong and rapid tumor tissue penetrability and distribution compared with trastuzumab. Collectively, the novel type of ADCs is effective and selective targeting to HER2-positive cancer, and may be a promising antitumor drug candidate for further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.