GRANDMA is a network of 25 telescopes of different sizes, including both photometric and spectroscopic facilities. The network aims to coordinate follow-up observations of gravitational-wave candidate alerts, especially those with large localisation uncertainties, to reduce the delay between the initial detection and the optical confirmation. In this paper, we detail GRANDMA’s observational performance during Advanced LIGO/Advanced Virgo Observing Run 3 (O3), focusing on the second part of O3; this includes summary statistics pertaining to coverage and possible astrophysical origin of the candidates. To do so, we quantify our observation efficiency in terms of delay between gravitational-wave candidate trigger time, observations, and the total coverage. Using an optimised and robust coordination system, GRANDMA followed-up about 90% of the gravitational-wave candidate alerts, i.e. 49 out of 56 candidates. This led to coverage of over 9000 deg2 during O3. The delay between the gravitational-wave candidate trigger and the first observation was below 1.5 hour for 50% of the alerts. We did not detect any electromagnetic counterparts to the gravitational-wave candidates during O3, likely due to the very large localisation areas (on average thousands of degrees squares) and relatively large distance of the candidates (above 200 Mpc for 60% of BNS candidates). We derive constraints on potential kilonova properties for two potential binary neutron star coalescences (GW190425 and S200213t), assuming that the events’ locations were imaged.
Abstract. The atmospheric turbulence and meteorology of the Maidanak Observatory in Uzbekistan are reviewed. Night time seeing was measured during the period August 1996 -November 1999 with the ESO Differential Image Motion Monitor. The median zenith seeing (FWHM) for the entire period of observations is 0.69 at 0.5 µm. A maximum clear sky season for Maidanak is JulySeptember, with about 90% of possible clear time and a median seeing of 0.69 . The best monthly median seeing, 0.62 , is observed in November. The winter maximum of clear time is usually observed in February (up to 50%) with a FWHM of 0.77 . During an additional site testing campaign (9 nights) organized in July 1998, the median wavefront outer scale L 0 of 25.9 m and a median isoplanatic angle θ 0 of 2.48 were measured with the Generalized Seeing Monitor developed at the University of Nice. The temporal evolution of the wavefront can be described by several layers moving at slow velocities with predominant direction from the West. This corresponds to a remarkably large atmospheric time constant. No correlation between wavefront velocity and the wind velocity at ground level was found. The good seeing, large isoplanatic angle and, especially, slow wind, place Maidanak Observatory among the best international astronomical sites for high angular resolution observations by interferometry and adaptive optics.
We present the Global Rapid Advanced Network Devoted to the Multi-messenger Addicts (GRANDMA). The network consists of 21 telescopes with both photometric and spectroscopic facilities. They are connected together thanks to a dedicated infrastructure. The network aims at coordinating the observations of large sky position estimates of transient events to enhance their follow-up and reduce the delay between the initial detection and the optical confirmation. The GRANDMA program mainly focuses on follow-up of gravitational-wave alerts to find and characterise the electromagnetic counterpart during the third observational campaign of the Advanced LIGO and Advanced Virgo detectors. But it allows for any follow-up of transient alerts involving neutrinos or gamma-ray bursts, even with poor spatial localisation. We present the different facilities, tools, and methods we developed for this network, and show its efficiency using observations of LIGO/Virgo S190425z, a binary neutron star merger candidate. We furthermore report on all GRANDMA follow-up observations performed during the first six months of the LIGO-Virgo observational campaign, and we derive constraints on the kilonova properties assuming that the events' locations were imaged by our telescopes.
Object GRB 221009A is the brightest gamma-ray burst (GRB) detected in more than 50 yr of study. In this paper, we present observations in the X-ray and optical domains obtained by the GRANDMA Collaboration and the Insight Collaboration. We study the optical afterglow with empirical fitting using the GRANDMA+HXMT-LE data sets augmented with data from the literature up to 60 days. We then model numerically using a Bayesian approach, and we find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky Way dust column and moderate low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT data set, we find that the simplest model, where the observed afterglow is produced by synchrotron radiation at the forward external shock during the deceleration of a top-hat relativistic jet by a uniform medium, fits the multiwavelength observations only moderately well, with a tension between the observed temporal and spectral evolution. This tension is confirmed when using the augmented data set. We find that the consideration of a jet structure (Gaussian or power law), the inclusion of synchrotron self-Compton emission, or the presence of an underlying supernova do not improve the predictions. Placed in the global context of GRB optical afterglows, we find that the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the global known sample despite its extreme energetics and the peculiar afterglow evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.