Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths. In addition to hepatitis viral infections, several cohort studies have shown that diabetes mellitus is a risk factor of HCC, making the incidence alarming high. However, it has not been demonstrated directly how diabetes develops to HCC, because of its difficulty to follow changes of liver histology in diabetic populations. Here, we report that non-alcoholic steatohepatitis (NASH) is pivotal to link diabetes with HCC by establishing a novel, reproducible NASH-HCC model in mice. Neonatal male mice exposed to low-dose streptozotocin (STZ) developed liver steatosis with diabetes 1 week after feeding high-fat diet (HFD). Continuous HFD decreased hepatic fat deposit whilst increased lobular inflammation with foam cell-like macrophages, showing NASH pathology. In parallel with decreased phagocytosis of macrophages, fibroblasts accumulated to form "chicken-wired" fibrosis. All mice developed multiple HCC later. Female mice treated with STZ-HFD and male mice treated with STZ alone showed diabetes but never developed HCC by the absence of NASH-based fibrosis. Thus, the present study provides the evidence in novel mouse model that NASH-based fibrosis is an essential histological process for diabetic populations to accelerate the development of HCC.
Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in anti-bacterial im-munity. Recent studies have demonstrated that MAIT cells might be implicated in inflammatory bowel diseases (IBDs), but their precise function in IBD remains to be elucidated. We investigated the possible involvement of MAIT cells in the immunopathogenesis of IBDs. Heparinized peripheral blood and biopsy specimens of the colon were collected from 25 patients with ulcerative colitis (UC), 15 patients with Crohn's disease (CD), and 19 heathy individuals. Lymphocytes were isolated from the blood and colon, and then MAIT cells were analyzed by flow cytometry. The frequency of MAIT cells was significantly lower in the blood of IBD patients compared to healthy donors and significantly higher in the inflamed colons compared to healthy colons (P = 0.001). Among the IBD patients, the frequency of MAIT cells in the blood and colon was correlated with disease activities. In vitro activated MAIT cells from IBD patients secreted significantly more tumor necrosis factor-α and interleukin-17 than those from healthy donors. These findings indicate that MAIT cells are activated in IBD patients, and their accumulation in the inflamed mucosa is correlated with disease activities.Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic, relapsing inflammatory conditions of the gastrointestinal tract. Although host genetic susceptibility and environmental factors have been implicated in causing the disturbed homeostasis of the intestinal immune system that results in IBD, the exact etiology of IBD is still unknown (11,19,20). Genetic variants clearly play a central role in conferring risk for IBD, but a wide range of environmental factors, including smoking, diet drugs, social stress, and microbial factors, are also thought to confer risk for IBD (2). Accumulating evidence has suggested that among those environmental factors, the dynamic balance between commensal flora and host defensive responses within the intestinal mucosa plays a pivotal role in both the initiation and per-
Induction of mucosal healing (MH) is an important treatment goal in inflammatory bowel disease (IBD). Although the molecular mechanisms underlying MH in IBD is not fully explored, local fibrosis would contribute to interfere mucosal repair. Carbohydrate sulfotransferase 15 (CHST15), which catalyzes sulfation of chondroitin sulfate to produce rare E-disaccharide units, is a novel mediator to create local fibrosis. Here we have used siRNA-based approach of silencing CHST15 in dextran sulfate sodium (DSS) induced colitis in mice, human colon fibroblasts and cancer cell lines. In a DSS-induced acute colitis model, CHST15 siRNA reduced CHST15 mRNA in the colon, serum IL-6, disease activity index (DAI) and accumulation of F4/80+ macrophages and ER-TR7+ fibroblasts, while increased Ki-67+ epithelial cells. In DSS-induced chronic colitis models, CHST15 siRNA reduced CHST15 mRNA in the colon, DAI, alpha-smooth muscle actin+ fibroblasts and collagen deposition, while enhanced MH as evidenced by reduced histological and endoscopic scores. We also found that endoscopic submucosal injection achieved effective pancolonic delivery of CHST15 siRNA in mice. In human CCD-18 Co cells, CHST15 siRNA inhibited the expression of CHST15 mRNA and selectively reduced E-units, a specific product biosynthesized by CHST15, in the culture supernatant. CHST15 siRNA significantly suppressed vimentin in both TGF-ß-stimulated CCD18-Co cells and HCT116 cells while up-regulated BMP7 and E-cadherin in HCT116 cells. The present study demonstrated that blockade CHST15 represses colonic fibrosis and enhances MH partly though reversing EMT pathway, illustrating a novel therapeutic opportunity to refractory and fibrotic lesions in IBD.
AIMTo define clinical criteria to differentiate eosinophilic gastrointestinal disorder (EoGD) in the esophagus.METHODSOur criteria were defined based on the analyses of the clinical presentation of eosinophilic esophagitis (EoE), subepithelial eosinophilic esophagitis (sEoE) and eosinophilic esophageal myositis (EoEM), identified by endoscopy, manometry and serum immunoglobulin E levels (s-IgE), in combination with histological and polymerase chain reaction analyses on esophageal tissue samples.RESULTSIn five patients with EoE, endoscopy revealed longitudinal furrows and white plaques in all, and fixed rings in two. In one patient with sEoE and four with EoEM, endoscopy showed luminal compression only. Using manometry, failed peristalsis was observed in patients with EoE and sEoE with some variation, while EoEM was associated with hypercontractile or hypertensive peristalsis, with elevated s-IgE. Histology revealed the following eosinophils per high-power field values. EoE = 41.4 ± 7.9 in the epithelium and 2.3 ± 1.5 in the subepithelium; sEoE = 3 in the epithelium and 35 in the subepithelium (conventional biopsy); EoEM = none in the epithelium, 10.7 ± 11.7 in the subepithelium (conventional biopsy or endoscopic mucosal resection) and 46.8 ± 16.5 in the muscularis propria (peroral esophageal muscle biopsy). Presence of dilated epithelial intercellular space and downward papillae elongation were specific to EoE. Eotaxin-3, IL-5 and IL-13 were overexpressed in EoE.CONCLUSIONBased on clinical and histological data, we identified criteria, which differentiated between EoE, sEoE and EoEM, and reflected a different pathogenesis between these esophageal EoGDs.
Local application of STNM01 is safe and well tolerated in CD patients with active mucosal lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.