Background. Diagnosis of malaria relies on parasite detection by microscopy or antigen detection; both fail to detect low-density infections. New tests providing rapid, sensitive diagnosis with minimal need for training would enhance both malaria diagnosis and malaria control activities. We determined the diagnostic accuracy of a new loop-mediated amplification (LAMP) kit in febrile returned travelers.Methods. The kit was evaluated in sequential blood samples from returned travelers sent for pathogen testing to a specialist parasitology laboratory. Microscopy was performed, and then malaria LAMP was performed using Plasmodium genus and Plasmodium falciparum–specific tests in parallel. Nested polymerase chain reaction (PCR) was performed on all samples as the reference standard. Primary outcome measures for diagnostic accuracy were sensitivity and specificity of LAMP results, compared with those of nested PCR.Results. A total of 705 samples were tested in the primary analysis. Sensitivity and specificity were 98.4% and 98.1%, respectively, for the LAMP P. falciparum primers and 97.0% and 99.2%, respectively, for the Plasmodium genus primers. Post hoc repeat PCR analysis of all 15 tests with discrepant results resolved 4 results in favor of LAMP, suggesting that the primary analysis had underestimated diagnostic accuracy.Conclusions. Malaria LAMP had a diagnostic accuracy similar to that of nested PCR, with a greatly reduced time to result, and was superior to expert microscopy.
This study aimed to assess analytical parameters of a prototype LAMP kit that was designed for detection of Trypanosoma cruzi DNA in human blood. The prototype is based on the amplification of the highly repetitive satellite sequence of T.cruzi in microtubes containing dried reagents on the inside of the caps. The reaction is carried out at 65°C during 40 minutes. Calcein allows direct detection of amplified products with the naked eye. Inclusivity and selectivity were tested in purified DNA from Trypanosoma cruzi stocks belonging to the six discrete typing units (DTUs), in DNA from other protozoan parasites and in human DNA. Analytical sensitivity was estimated in serial dilutions of DNA samples from Sylvio X10 (Tc I) and CL Brener (Tc VI) stocks, as well as from EDTA-treated or heparinized blood samples spiked with known amounts of cultured epimastigotes (CL Brener). LAMP sensitivity was compared after DNA extraction using commercial fiberglass columns or after “Boil & Spin” rapid preparation. Moreover, the same DNA and EDTA-blood spiked samples were subjected to standardized qPCR based on the satellite DNA sequence for comparative purposes. A panel of peripheral blood specimens belonging to Chagas disease patients, including acute, congenital, chronic and reactivated cases (N = 23), as well as seronegative controls (N = 10) were evaluated by LAMP in comparison to qPCR. LAMP was able to amplify DNAs from T. cruzi stocks representative of the six DTUs, whereas it did not amplify DNAs from Leishmania sp, T. brucei sp, T. rangeli KPN+ and KPN-, P. falciparum and non-infected human DNA. Analytical sensitivity was 1x10-2 fg/μL of both CL Brener and Sylvio X10 DNAs, whereas qPCR detected up to 1x 10−1 fg/μL of CL Brener DNA and 1 fg/μl of Sylvio X10 DNA. LAMP detected 1x10-2 parasite equivalents/mL in spiked EDTA blood and 1x10-1 par.eq/mL in spiked heparinized blood using fiberglass columns for DNA extraction, whereas qPCR detected 1x10-2 par.eq./mL in EDTA blood. Boil & Spin extraction allowed detection of 1x10-2 par.eq /mL in spiked EDTA blood and 1 par.eq/ml in heparinized blood. LAMP was able to detect T.cruzi infection in peripheral blood samples collected from well-characterised seropositive patients, including acute, congenital, chronic and reactivated Chagas disease. To our knowledge, this is the first report of a prototype LAMP kit with appropriate analytical sensitivity for diagnosis of Chagas disease patients, and potentially useful for monitoring treatment response.
Background Treatment with epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitors (TKIs) leads to initial response in most patients with EGFR‐mutated non‐small cell lung cancer (NSCLC). In contrast, little is known of the subpopulation of patients with NSCLC with EGFR mutations who exhibit clinical outcomes that require treatment with immune checkpoint inhibitors (ICIs). Therefore, to identify eligible cases to treat with ICIs, we retrospectively analyzed the correlation between clinical features and the efficacy of ICIs in patients with EGFR mutations. Patients and Methods We retrospectively analyzed patients with advanced NSCLC harboring EGFR mutations who were treated with ICIs after developing resistance to EGFR‐TKIs between February 2016 and April 2018 at 6 institutions in Japan. The association between clinical outcomes and the efficacy of ICIs was investigated. Results We enrolled 27 patients who harbored EGFR‐activating mutations. The objective response and disease control rates were higher in patients with uncommon EGFR mutations than in those with common EGFR mutations (71% vs 35.7% and 57% vs 7%, P = 0.14 and P < 0.01, respectively). Patients with uncommon EGFR mutations or without T790M mutations exhibited a significantly longer median progression‐free survival than those with common EGFR mutations or with T790M mutations (P = 0.003 and P = 0.03, respectively). Conclusion Patients with uncommon EGFR mutations and without T790M mutations are associated with the best outcomes for treatment with immunotherapy among those with EGFR‐mutated NSCLC, based on retrospective analysis. Further research is needed to validate the clinical biomarkers involved in ICI responders with EGFR mutations.
BackgroundConfirmatory diagnosis of visceral leishmaniasis (VL), as well as diagnosis of relapses and test of cure, usually requires examination by microscopy of samples collected by invasive means, such as splenic, bone marrow or lymph node aspirates. This causes discomfort to patients, with risks of bleeding and iatrogenic infections, and requires technical expertise. Molecular tests have great potential for diagnosis of VL using peripheral blood, but require well-equipped facilities and trained personnel. More user-friendly, and field-amenable options are therefore needed. One method that could meet these requirements is loop-mediated isothermal amplification (LAMP) using the Loopamp Leishmania Detection Kit, which comes as dried down reagents that can be stored at room temperature, and allows simple visualization of results.Methodology/Principal findingsThe Loopamp Leishmania Detection Kit (Eiken Chemical Co., Japan), was evaluated in the diagnosis of VL in Sudan. A total of 198 VL suspects were tested by microscopy of lymph node aspirates (the reference test), direct agglutination test-DAT (in house production) and rK28 antigen-based rapid diagnostic test (OnSite Leishmania rK39-Plus, CTK Biotech, USA). LAMP was performed on peripheral blood (whole blood and buffy coat) previously processed by: i) a direct boil and spin method, and ii) the QIAamp DNA Mini Kit (QIAgen). Ninety seven of the VL suspects were confirmed as cases by microscopy of lymph node aspirates. The sensitivity and specificity for each of the tests were: rK28 RDT 98.81% and 100%; DAT 88.10% and 78.22%; LAMP-boil and spin 97.65% and 99.01%; LAMP-QIAgen 100% and 99.01%.Conclusions/SignificanceDue to its simplicity and high sensitivity, rK28 RDT can be used first in the diagnostic algorithm for primary VL diagnosis, the excellent performance of LAMP using peripheral blood indicates that it can be also included in the algorithm for diagnosis of VL as a simple test when parasitological confirmatory diagnosis is required in settings that are lower than the reference laboratory, avoiding the need for invasive lymph node aspiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.