Bacterial vaginosis (BV) is a common complex associated with numerous adverse health outcomes, affecting women of different ages throughout the world. The etiology of BV remains poorly understood due to the difficulty of establishing a molecular genetic criterion to recognize the vaginal microbiota of BV-positive women from that of the normal women. We used techniques of broad-range PCR-DGGE and gel imaging analysis system cooperated with 16S rRNA gene sequencing and statistical analysis to investigate the community structure of the healthy and BV-affected vaginal microbial ecosystems. The community of vaginal bacteria detected in subjects with BV was far more luxuriant and diverse than in subjects without BV. The mean number of microbial species in 128 BV-positive women was nearly two times greater than in 68 subjects without BV(4.05±1.96 versus 2.59±1.14). Our sequencing efforts yielded many novel phylotypes (198 of our sequences represented 59 species), including several novel BV-associated bacteria (BVAB) and many belonging to opportunistic infections, which remain inexplicable for their roles in determining the health condition of vaginal microflora. This study identifies Algoriphagus aquatilis, Atopobium vaginae, Burkholderia fungorum, Megasphaera genomosp species as indicators to BV and subjects with BV harbor particularly taxon-rich and diverse bacterial communities. Maybe Bifidobacterium, Staphylococcus or even more alien species are commensal creatures in normal vaginal microbiota.
Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor.
ObjectiveThe aim of this study was to investigate the role of CD109 in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) and to evaluate its potential as a therapeutic target.MethodsCD109 expression was examined in synovial tissues and FLSs from RA patients and collagen-induced arthritis (CIA) model mice. CD109-deficient mice were developed to evaluate the severity of CIA. Small interfering RNAs and a neutralising antibody against CD109 (anti-CD109) were designed for functional or treatment studies in RA FLSs and CIA.ResultsCD109 was found to be abundantly expressed in the synovial tissues from RA patients and CIA mice. CD109 expression in RA FLSs was upregulated by inflammatory stimuli, such as interleukin-1β and tumour necrosis factor-α. Silencing of CD109 or anti-CD109 treatment reduced proinflammatory factor production, cell migration, invasion, chemoattractive potential and osteoclast differentiation, thereby reducing the deleterious inflammatory response of RA FLSs in vitro. Mice lacking CD109 were protected against arthritis in the CIA model. Anti-CD109 treatment prevented the onset and ameliorated the severity of CIA lesions.ConclusionOur study uncovers an antiarthritic role for CD109 and suggests that CD109 inhibition might serve as a promising novel therapeutic strategy for RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.