Three isomers were prepared by covalently grafting carbazole (Cz) onto spiro[fluorene-9,9'-xanthene] (SFX) at different positions. Due to the complicated and variable roles of molecular segments, an evolution of the corresponding molecular packing mode was realized, accompanied by the change of nanocrystal morphology and photoluminescence properties.
Accurate motion feature extraction and recognition provide critical information for many scientific problems. Herein, a new paradigm for a wearable seamless multimode sensor with the ability to decouple pressure and strain stimuli and recognize the different joint motion states is reported. This wearable sensor is integrated into a unique seamless structure consisting of two main parts (a resistive component and a capacitive component) to decouple the different stimuli by an independent resistance-capacitance sensing mechanism. The sensor exhibits both high strain sensitivity (GF = 7.62, 0–140% strain) under the resistance mechanism and high linear pressure sensitivity (S = 3.4 kPa−1, 0–14 kPa) under the capacitive mechanism. The sensor can differentiate the motion characteristics of the positions and states of different joints with precise recognition (97.13%) with the assistance of machine learning algorithms. The unique integrated seamless structure is achieved by developing a layer-by-layer casting process that is suitable for large-scale manufacturing. The proposed wearable seamless multimode sensor and the convenient process are expected to contribute significantly to developing essential components in various emerging research fields, including soft robotics, electronic skin, health care, and innovative sports systems applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.