Cervical cancer remains a major threat to women's health, especially in countries with limited medical resources, and new drugs are needed to improve patient survival and minimize adverse effects. Here, we examine the effects of a triphenylphosphonium (TPP)‐conjugated pyrrole‐imidazole polyamide (CCC‐h1005) targeting the common homoplasmic mitochondrial DNA (mtDNA) cancer risk variant (ATP6 8860A>G) on the survival of cervical cancer cell lines, cisplatin‐resistant HeLa cells and patient‐derived cervical clear cell carcinoma cells as models of cervical cancer treatment. We found that CCC‐h1005 induced death in these cells and suppressed the growth of xenografted HeLa tumors with no severe adverse effects. These results suggest that PIP‐TPP designed to target mtDNA cancer risk variants can be used to treat many cervical cancers harboring high copies of the target variant, providing a foundation for clinical trials of this class of molecules for treating cervical cancer and other types of cancers.
Background
Although the aberrant activation of NOTCH1 pathway causes a malignant progression of renal cell carcinoma (RCC), the precise molecular mechanisms behind the potential action of pro-oncogenic NOTCH1/HES1 axis remain elusive. Here, we examined the role of tumor suppressive miR-138–2 in the regulation of NOTCH1-HES1-mediated promotion of RCC.
Methods
This study employed bioinformatics, xenotransplant mouse models, ChIP assay, luciferase reporter assay, functional experiments, real-time PCR and Western blot analysis to explore the mechanisms of miR-138–2 in the regulation of NOTCH1-HES1-mediated promotion of RCC, and further explored miR-138–2-containing combination treatment strategies.
Results
There existed a positive correlation between down-regulation of miR-138 and the aberrant augmentation of NOTCH1/HES1 regulatory axis. Mechanistically, HES1 directly bound to miR-138–2 promoter region and thereby attenuated the transcription of miR-138-5p as well as miR-138–2-3p. Further analysis revealed that miR-138-5p as well as miR-138–2-3p synergistically impairs pro-oncogenic NOTCH1 pathway through the direct targeting of APH1A, MAML1 and NOTCH1.
Conclusions
Collectively, our current study strongly suggests that miR-138–2 acts as a novel epigenetic regulator of pro-oncogenic NOTCH1 pathway, and that the potential feedback regulatory loop composed of HES1, miR-138–2 and NOTCH1 contributes to the malignant development of RCC. From the clinical point of view, this feedback regulatory loop might be a promising therapeutic target to treat the patients with RCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.