We generated a novel mouse strain expressing transgenic human interleukin-15 (IL-15) using the severe immunodeficient NOD/Shi-scid-IL-2Rγnull (NOG) mouse genetic background (NOG-IL-15 Tg). Human natural killer (NK) cells, purified from the peripheral blood (hu-PB-NK) of normal healthy donors, proliferated when transferred into NOG-IL-15 Tg mice. In addition, the cell number increased, and the hu-PB-NK cells persisted for 3 months without signs of xenogeneic graft versus host diseases (xGVHD). These in vivo-expanded hu-PB-NK cells maintained the original expression patterns of various surface antigens, including NK receptors and killer cell immunoglobulin-like receptor (KIR) molecules. They also contained significant amounts of granzyme A and perforin. Inoculation of K562 leukemia cells into hu-PB-NK-transplanted NOG-IL-15 Tg mice resulted in significant suppression of tumor growth compared with non-transplanted mice. Furthermore, NOG-IL-15 Tg mice allowed for engraftment of in vitro-expanded NK cells prepared for clinical cell therapy. These cells exerted antibody-dependent cell-mediated cytotoxicity (ADCC) on Her2-positive gastric cancer cells in the presence of therapeutic anti-Her2 antibody, and subsequently suppressed tumor growth. Our results collectively suggest that the NOG-IL-15 Tg mice are a useful model for studying human NK biology and evaluating human NK cell-mediated in vivo cytotoxicity.
Graft-versus-host disease (GVHD) is a major complication of allogenic bone marrow transplantation and involves the infiltration of donor CD4 and/or CD8 T cells into various organs of the recipient. The pathological role of human CD4 and CD8 T cells in GVHD remains controversial. In this study, we established two novel xenogeneic (xeno)-GVHD models. Human CD4 or CD8 T cells were purified from peripheral blood and were transplanted into immunodeficient NOD/Shi-scid IL2rg (NOG) mice. Human CD8 T cells did not induce major GVHD symptoms in conventional NOG mice. However, CD8 T cells immediately proliferated and induced severe GVHD when transferred into NOG mice together with at least 0.5 × 10 CD4 T cells or into NOG human interleukin (IL)-2 transgenic mice. Human CD4 T cell-transplanted NOG mice developed skin inflammations including alopecia, epidermal hyperplasia, and neutrophilia. Pathogenic T helper (Th)17 cells accumulated in the skin of CD4 T cell-transplanted NOG mice. Further, an anti-human IL-17 antibody (secukinumab) significantly suppressed these skin pathologies. These results indicate that pathogenic human Th17 cells induce cutaneous GVHD via IL-17-dependent pathways. This study provides fundamental insights into the pathogenesis of xeno-GVHD, and these humanized mouse models may be useful as preclinical tools for the prevention of GVHD.
We generated a severe immunodeficient NOD/Shi-scid-IL-2Rγnull (NOG) mouse substrain expressing the transgenic human IL-2 gene (NOG–IL-2 Tg). Upon transfer of human cord blood–derived hematopoietic stem cells (HSCs), CD3−CD56highCD16+/− cells developed unexpectedly, predominantly in the NOG–IL-2 Tg (hu-HSC NOG–IL-2 Tg). These cells expressed various NK receptors, including NKp30, NKp44, NKp46, NKG2D, and CD94, as well as a diverse set of killer cell Ig-like receptor molecules at levels comparable to normal human NK cells from the peripheral blood, which is evidence of their maturity. They produced levels of granzyme A as high as in human peripheral blood–derived NK cells, and a considerable amount of perforin protein was detected in the plasma. Human NK cells in hu-HSC NOG–IL-2 Tg produced IFN-γ upon stimulation, and IL-2, IL-15, or IL-12 treatment augmented the in vitro cytotoxicity. Inoculation of K562 leukemia cells into hu-HSC NOG–IL-2 Tg caused complete rejection of the tumor cells, whereas inoculation into hu-HSC NOG fully reconstituted with human B, T, and some NK cells did not. Moreover, when a CCR4+ Hodgkin’s lymphoma cell line was inoculated s.c. into hu-HSC NOG–IL-2 Tg, the tumor growth was significantly suppressed by treatment with a therapeutic humanized anti-CCR4 Ab (mogamulizumab), suggesting that the human NK cells in the mice exerted active Ab-dependent cellular cytotoxicity in vivo. Taken together, these data suggest that the new NOG–IL-2 Tg strain is a unique model that can be used to investigate the biological and pathological functions of human NK cells in vivo.
Immunodeficient mice engrafted with human peripheral blood cells are promising tools for in vivo analysis of human patient individual immune responses. However, when human peripheral blood mononuclear cells (PBMCs) are transferred into NOG (NOD/Shi-scid, IL-2rg) mice, severe graft versus host disease (GVHD) hinders long term detailed analysis. Administration of human PBMCs into newly developed murine MHC class I- and class II-deficient NOG (NOG-dKO; NOG- Iab, B2m-double-knockout) mice showed sufficient engraftment of human immune cells with little sign of GVHD. Immunization with influenza vaccine resulted in an increase in influenza-specific human IgG Ab, indicating induction of antigen-specific B cells in the NOG-dKO mice. Immunization with human dendritic cells pulsed with HLA-A2 restricted cytomegalovirus peptide induced specific cytotoxic T cells, indicating the induction of antigen-specific T cells in the NOG-dKO mice. Adoptive cell therapies (ACTs) using melanoma antigen recognized by T cells (MART-1)-specific TCR-transduced activated T cells showed strong tumor growth inhibition in NOG-dKO mice without any sign of GVHD accompanied by preferential expansion of the transferred MART-1-specific T cells. ACTs using cultured human melanoma infiltrating T cells also showed anti-tumor effects against autologous melanoma cells in NOG-dKO mice, in which changes in human cancer phenotypes by immune intervention, such as increased CD271 expression, could be evaluated. Therefore, NOG-dKO mice are useful tools for more detailed analysis of both the induction and effector phases of T-cell and B-cell responses for a longer period than regular NOG mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.