High-sensitivity wide-band X-ray spectroscopy is the key feature of the Suzaku X-ray observatory, launched on 2005 July 10. This paper summarizes the spacecraft, in-orbit performance, operations, and data processing that are related to observations. The scientific instruments, the high-throughput X-ray telescopes, X-ray CCD cameras, non-imaging hard X-ray detector are also described.
We present the design parameters, production process, and in-flight performance of the X-ray telescope (XRT) onboard Suzaku. The imaging capability is significantly improved over the ASCA XRT, which had half-power diameters of ${3\rlap {.}{}^{\mathrm {\prime }}6}$, to ${1\rlap {.}{}^{\mathrm {\prime }}8}$–${2\rlap {.}{}^{\mathrm {\prime }}3}$ for all four XRT-I modules. The optical axes are found to be distributed within a radius of ${1\rlap {.}{}^{\mathrm {\prime }}3}$, which makes the observation efficiency of all the XRTs more than 97% at the XIS-default observing position. The vignetting over the XIS field of view predicted via ray-tracing coincides with that measured for observations of the Crab Nebula to within $\sim 10\%$. Contemporaneous fits of a power law to all of the XIS spectra of the Crab Nebula taken at the two standard observing positions (XIS/HXD-default positions) gives a flux consistent with that obtained by Toor and Seward (1974, AJ, 79, 995) to within $\sim 2\%$. The pre-collimator on the top of each XRT module successfully reduces the intensity of the stray light from the $20'$ and $50'$-off directions down to the level of pre-flight expectations.
Supernova remnants ($=$ SNR) are suggested to be sites of cosmic-ray acceleration. In particular, it has been an issue of keen interest whether cosmic ray protons are being accelerated in a SNR which emits TeV $\gamma$-rays. A crucial observational test for this is to find dense molecular gas towards the SNR, because such molecular gas can best verify the existence of cosmic-ray protons via pion decay to $\gamma$-rays. Here, we show that new high-resolution mm-wave observations of interstellar CO molecule have revealed molecular gas at 1 kpc distance interacting with the TeV $\gamma$-ray SNR G 347.3$-$0.5, and that a molecular cloud of $\sim 200$ solar masses is clearly associated with the TeV $\gamma$-ray peak, providing strong evidence for proton acceleration. We have estimated the total energy of accelerated protons to be $\sim 1048 \,\mathrm{erg}$, which corresponds to an acceleration efficiency of $\sim 0.001$, posing an observational constraint on the proton acceleration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.