The establishment and maintenance of epigenetic gene silencing is fundamental to cell determination and function. The essential epigenetic systems involved in heritable repression of gene activity are the Polycomb group (PcG) proteins and the DNA methylation systems. Here we show that the corresponding silencing pathways are mechanistically linked. We find that the PcG protein EZH2 (Enhancer of Zeste homolog 2) interacts-within the context of the Polycomb repressive complexes 2 and 3 (PRC2/3)-with DNA methyltransferases (DNMTs) and associates with DNMT activity in vivo. Chromatin immunoprecipitations indicate that binding of DNMTs to several EZH2-repressed genes depends on the presence of EZH2. Furthermore, we show by bisulphite genomic sequencing that EZH2 is required for DNA methylation of EZH2-target promoters. Our results suggest that EZH2 serves as a recruitment platform for DNA methyltransferases, thus highlighting a previously unrecognized direct connection between two key epigenetic repression systems.
The Myc transcription factor is an essential mediator of cell growth and proliferation through its ability to both positively and negatively regulate transcription. The mechanisms by which Myc silences gene expression are not well understood. The current model is that Myc represses transcription through functional interference with transcriptional activators. Here we show that Myc binds the corepressor Dnmt3a and associates with DNA methyltransferase activity in vivo. In cells with reduced Dnmt3a levels, we observe specific reactivation of the Myc-repressed p21Cip1 gene, whereas the expression of Myc-activated E-boxes genes is unchanged. In addition, we find that Myc can target Dnmt3a selectively to the promoter of p21Cip1. Myc is known to be recruited to the p21Cip1 promoter by the DNA-binding factor Miz-1. Consistent with this, we observe that Myc and Dnmt3a form a ternary complex with Miz-1 and that this complex can corepress the p21Cip1 promoter. Finally, we show that DNA methylation is required for Myc-mediated repression of p21Cip1. Our data identify a new mechanism by which Myc can silence gene expression not only by passive functional interference but also by active recruitment of corepressor proteins. Furthermore, these findings suggest that targeting of DNA methyltransferases by transcription factors is a wide and general mechanism for the generation of specific DNA methylation patterns within a cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.