Protein-protein interfaces can consist of interactions between large numbers of residues of each molecule; some of these interactions are critical in determining binding affinity and conferring specificity, while others appear to play only a marginal role. Src-homology-2 (SH2) domains bind to proteins containing phosphorylated tyrosines, with additional specificity provided by interactions with residues C-terminal to the phosphotyrosine (pTyr) residue. While the C-terminal SH2 domain of phospholipase C-gamma 1 (PLCC SH2) interacts with eight residues of a pTyr-containing peptide from its high affinity binding site on the beta-platelet-derived growth factor receptor, it can still bind tightly to a phosphopeptide containing only three residues. Novel deuterium (2H) based nuclear magnetic resonance (NMR) spin relaxation experiments which probe the nanosecond-picosecond time scale dynamics of methyl containing side chain residues have established that certain regions of the PLCC SH2 domain contacting the residues C-terminal to the pTyr have a high degree of mobility in both the free and peptide complexed states. In contrast, there is significant restriction of motion in the pTyr binding site. These results suggest a correlation between the dynamic behavior of certain groups in the PLCC SH2 complex and their contribution to high affinity binding and binding specificity.
The activation of caspases represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Multiple pathways leading to caspase activation appear to exist and vary depending on the death-inducing stimulus. We demonstrate that the activation of caspase-3, in Jurkat cells stimulated to undergo apoptosis by a Fas-independent pathway, is catalyzed by caspase-6. Caspase-6 was found to co-purify with caspase-3 as part of a multiprotein activation complex from extracts of camptothecin-treated Jurkat cells. A biochemical analysis of the protein constituents of the activation complex showed that Hsp60 was also present. Furthermore, an interaction between Hsp60 and caspase-3 could be demonstrated by co-immunoprecipitation experiments using HeLa as well as Jurkat cell extracts. Using a reconstituted in vitro system, Hsp60 was able to substantially accelerate the maturation of procaspase-3 by different upstream activator caspases and this effect was dependent on ATP hydrolysis. We propose that the ATP-dependent 'foldase' activity of Hsp60 improves the vulnerability of pro-caspase-3 to proteolytic maturation by upstream caspases and that this represents an important regulatory event in apoptotic cell death.
Compounds containing a 1-cyanopyrrolidinyl ring were identified as potent and reversible inhibitors of cathepsins K and L. The original lead compound 1 inhibits cathepsins K and L with IC(50) values of 0. 37 and 0.45 M, respectively. Modification of compound 1 by replacement of the quinoline moiety led to the synthesis of N-(1-cyano-3-pyrrolidinyl)benzenesulfonamide (2). Compound 2 was found to be a potent inhibitor of cathepsins K and L with a K(i) value of 50 nM for cathepsin K. Replacement of the 1-cyanopyrrolidine of compound 2 by a 1-cyanoazetidine increased the potency of the inhibitor by 10-fold. This increase in potency is probably due to an enhanced chemical reactivity of the compound toward the thiolate of the active site of the enzyme. This is demonstrated when the assay is performed in the presence of glutathione at pH 7.0 which favors the formation of a GSH thiolate anion. Under these assay conditions, there is a loss of potency in the 1-cyanoazetidine series due to the formation of an inactive complex between the GSH thiolate and the 1-cyanoazetidine inhibitors. 1-Cyanopyrrolidinyl inhibitors exhibited time-dependent inhibition which allowed us to determine the association and dissociation rate constants with human cathepsin K. The kinetic data obtained showed that the increase of potency observed between different 1-cyanopyrrolidinyl inhibitors is due to an increase of k(on) values and that the association of the compound with the enzyme fits an apparent one-step mechanism. (13)C NMR experiments performed with the enzyme papain showed that compound 2 forms a covalent isothiourea ester adduct with the enzyme. As predicted by the kinetic analysis, the addition of the irreversible inhibitor E64 to the enzyme-cyanopyrrolidinyl complex totally abolished the signal of the isothiourea bond as observed by (13)C NMR, thereby demonstrating that the formation of the covalent bond with the active site cysteine residue is reversible. Finally, compound 2 inhibits bone resorption in an in vitro assay involving rabbit osteoclasts and bovine bone with an IC(50) value of 0.7 M. 1-Cyanopyrrolidine represents a new class of nonpeptidic compounds that inhibit cathepsin K and L activity and proteolysis of bone collagen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.