Purpose:To investigate the proportion of breast cancers arising in patients with germ line BRCA1 and BRCA2 mutations expressing basal markers and developing predictive tests for identification of high-risk patients. Experimental Design: Histopathologic material from182 tumors in BRCA1mutation carriers, 63 BRCA2 carriers, and 109 controls, collected as part of the international Breast Cancer Linkage Consortium were immunohistochemically stained for CK14, CK5/6, CK17, epidermal growth factor receptor (EGFR), and osteonectin. Results: All five basal markers were commoner in BRCA1 tumors than in control tumors (CK14: 61% versus 12%; CK5/6: 58% versus 7%; CK17: 53% versus 10%; osteonectin: 43% versus 19%; EGFR: 67% versus 21%; P < 0.0001 in each case). In a multivariate analysis, CK14, CK5/6, and estrogen receptor (ER) remained significant predictors of BRCA1 carrier status. In contrast, the frequency of basal markers in BRCA2 tumors did not differ significant from controls. Conclusion: The use of cytokeratin staining in combination with ER and morphology provides a more accurate predictor of BRCA1 mutation status than previously available, that may be useful in selecting patients for BRCA1 mutation testing. The high percentage of BRCA1 cases positive for EGFR suggests that specific anti-tyrosine kinase therapy may be of potential benefit in these patients.
To investigate the clinical value of somatic TP53 mutations in breast cancer, we assembled clinical and molecular data on 1,794 women with primary breast cancer with long-term follow-up and whose tumor has been screened for mutation in exons 5 to 8 of TP53 by gene sequencing. TP53 mutations were more frequent in tumors of ductal and medullar types, aggressive phenotype (high grade, large size, node positive cases, and low hormone receptor content) and in women <60 years old. TP53 mutations within exons 5 to 8 conferred an elevated risk of breast cancer^specific death of 2.27 (relative risk >10 years; P < 0.0001) compared with patients with no such mutation. The prognostic value of TP53 mutation was independent of tumor size, node status, and hormone receptor content, confirming and reconciling previous findings in smaller series. Moreover, an interaction between TP53 mutation and progesterone receptor (PR) status was revealed, TP53 mutation combined with the absence of progesterone receptor being associated with the worst prognosis. Whereas previous studies have emphasized the fact that missense mutations in the DNA-binding motifs have a worse prognosis than missense mutations outside these motifs, we show that non^missense mutations have prognostic value similar to missense mutations in DNA-binding motifs. Nonetheless, specific missense mutants (codon 179 and R248W) seem to be associated with an even worse prognosis. These results, obtained on the largest series analyzed thus far, show that TP53 mutations identified by gene sequencing have an independent prognostic value in breast cancer and could have potential uses in clinical practice.The tumor suppressor gene TP53 plays a key role in many cellular pathways controlling cell proliferation, cell survival, and genomic integrity. It acts as a proliferation brake when cells experience stress conditions, such as DNA-damage, hypoxia, or oncogene activation. Disrupting TP53 function promotes checkpoint defects, genomic instability, and inappropriate survival, leading to the uncontrolled proliferation of damaged cells. The proliferative advantage given by its inactivation, and the fact that it is ubiquitously expressed, explains why it is frequently found to be mutated in almost every type of cancer (1). It has been shown in various experimental in vitro systems, as well as in mouse models, that cell cycle arrest or apoptosis induced by radiotherapy and various chemotherapeutic drugs depends on an intact TP53 pathway (2, 3). These results have raised the hypothesis that TP53 could be a key player in defining tumor sensitivity to a broad range of anticancer treatments in patients with cancer. Moreover, the presence of a TP53 mutation could be one of the underlying causes of drug resistance, the major cause of treatment failure and cancer death.Several studies have investigated the predictive value of TP53 mutation status for tumor response to treatment and patient outcome in various cancers. Different clinical and methodologic
Our study has identified key features of the histologic phenotypes of breast cancers in carriers of mutant BRCA1 and BRCA2 genes. This information may improve the classification of breast cancers in individuals with a family history of the disease and may ultimately aid in the clinical management of patients.
Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease1. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10−8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 14% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
Purpose: Pheochromocytomas (PCC) and paragangliomas (PGL) are genetically heterogeneous neural crest-derived neoplasms. Recently we identified germline mutations in a new tumor suppressor susceptibility gene, MAX (MYC-associated factor X), which predisposes carriers to PCC. How MAX mutations contribute to PCC/PGL and associated phenotypes remain unclear. This study aimed to examine the prevalence and associated phenotypic features of germline and somatic MAX mutations in PCC/PGL.Design: We sequenced MAX in 1,694 patients with PCC or PGL (without mutations in other major susceptibility genes) from 17 independent referral centers. We screened for large deletions/duplications in 1,535 patients using a multiplex PCR-based method. Somatic mutations were searched for in tumors from an additional 245 patients. The frequency and type of MAX mutation was assessed overall and by clinical characteristics.Results: Sixteen MAX pathogenic mutations were identified in 23 index patients. All had adrenal tumors, including 13 bilateral or multiple PCCs within the same gland (P < 0.001), 15.8% developed additional tumors at thoracoabdominal sites, and 37% had familial antecedents. Age at diagnosis was lower (P ¼ 0.001) in MAX mutation carriers compared with nonmutated cases. Two patients (10.5%) developed metastatic disease. A mutation affecting MAX was found in five tumors, four of them confirmed as somatic (1.65%). MAX tumors were characterized by substantial increases in normetanephrine, associated with normal or minor increases in metanephrine.Conclusions: Germline mutations in MAX are responsible for 1.12% of PCC/PGL in patients without evidence of other known mutations and should be considered in the genetic work-up of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.