The authors demonstrate a unique low cost process to print 2D, submicron size, and high refractive index nanopillars using a direct colloidal-photolithography process. A well collimated i-line source emitting at 365 nm wavelength illuminates a mono layer of silica microspheres of 1 μm diameter deposited on a photosensitive TiO2-based sol-gel layer. No etching process is needed since this layer is directly UV photo patternable like a negative photoresist. Furthermore, this thin layer offers interesting optical properties (high refractive index and optical transparency) and good mechanical and chemical stability and thus can be directly used as a functional microstructure (for PV or sensor applications, for example). The paper describes the modeling of the electric field distribution below the spheres during the illumination process, the photochemistry of the TiO2 sol-gel layer process, and preliminary results of TiO2 nanopillars of around 200 nm in diameter fabricated on a three-inch substrate.
We report on the design, fabrication, and characterization of an all-dielectric one-dimensional (1D) resonant device formed by a silicon nitride grating impregnated by a low-index magneto-optical silica-type matrix. This impregnation is realized through the dipping of the 966 nm periodic template in a sol−gel solution previously doped with CoFe 2 O 4 nanoparticles, and able to fill the grating slits. By a proper adjustment of the geometrical parameters of such a photonic crystal membrane, simultaneous excitation of transverse electric (TE) and transverse magnetic (TM) polarization resonances is nearly achieved at 1570 nm. This TE/TM phase-matching situation leads to a fivefold enhancement of the Faraday effect in the resonance area with an increased merit factor of 0.32°. Moreover, the device demonstrates its ability to enhance longitudinal and transverse Kerr effects for the other directions of the applied magnetic field. Taking benefits from the ability of the nanocomposite material to be processed on photonic platforms, and despite its quite low magneto-optical activity compared to classical magnetic materials, this work proves that an alldielectric 1D device can produce a high magneto-optical sensitivity to every magnetic field directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.