SummaryBackgroundHigh plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.MethodsWe performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.FindingsCarriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10−13) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69–2·69, p=2×10−10).InterpretationSome genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.FundingUS National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the German Federal Ministry of Education and Research.
SummaryBackgroundRaised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher.MethodsFor this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure.FindingsWe pooled 1479 studies that had measured the blood pressures of 19·1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127·0 mm Hg (95% credible interval 125·7–128·3) in men and 122·3 mm Hg (121·0–123·6) in women; age-standardised mean diastolic blood pressure was 78·7 mm Hg (77·9–79·5) for men and 76·7 mm Hg (75·9–77·6) for women. Global age-standardised prevalence of raised blood pressure was 24·1% (21·4–27·1) in men and 20·1% (17·8–22·5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the estimated trends in these super-regions had larger uncertainty than in high-income super-regions. By contrast, mean blood pressure might have increased in east and southeast Asia, south Asia, Oceania, and sub-Saharan Africa. In 2015, central and eastern Europe, sub-Saharan Africa, and south Asia had the highest blood pressure levels. Prevalence of raised blood pressure decreased in high-income and some middle-income countries; it remained unchanged elsewhere. The number of adults with raised blood pressure increased from 594 million in 1975 to 1·13 billion in 2015, with the increase largely in low-income and middle-income countries. The global increase in the number of adults with raised blood pressure is a net effect of increase due to population growth and ageing, and decrease due to declining age-specific prevalence.InterpretationDuring the past four decades, the highest worldwide blood pressure levels have shifted from high-income countries to low-income countries in south Asia and sub-Saharan Africa due to opposite trends, while blood pressure has been persistently high in central and eastern Europe.FundingWellcome Trust.
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes.
Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5m genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N≤71,225 European ancestry, N=12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N=29,136). We identified association between systolic or diastolic blood pressure and common variants in 8 regions near the CYP17A1 (P=7×10−24), CYP1A2 (P=1×10−23), FGF5 (P=1×10−21), SH2B3 (P=3×10−18), MTHFR (P=2×10−13), c10orf107 (P=1×10−9), ZNF652 (P=5×10−9) and PLCD3 (P=1×10−8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
ObjeCtiveTo provide an overview of prediction models for risk of cardiovascular disease (CVD) in the general population.Design Systematic review. Data sOurCesMedline and Embase until June 2013.eligibility Criteria fOr stuDy seleCtiOn Studies describing the development or external validation of a multivariable model for predicting CVD risk in the general population. results 9965 references were screened, of which 212 articles were included in the review, describing the development of 363 prediction models and 473 external validations. Most models were developed in Europe (n=167, 46%), predicted risk of fatal or non-fatal coronary heart disease (n=118, 33%) over a 10 year period (n=209, 58%). The most common predictors were smoking (n=325, 90%) and age (n=321, 88%), and most models were sex specific (n=250, 69%). Substantial heterogeneity in predictor and outcome definitions was observed between models, and important clinical and methodological information were often missing. The prediction horizon was not specified for 49 models (13%), and for 92 (25%) crucial information was missing to enable the model to be used for individual risk prediction. Only 132 developed models (36%) were externally validated and only 70 (19%) by independent investigators. Model performance was heterogeneous and measures such as discrimination and calibration were reported for only 65% and 58% of the external validations, respectively. COnClusiOnsThere is an excess of models predicting incident CVD in the general population. The usefulness of most of the models remains unclear owing to methodological shortcomings, incomplete presentation, and lack of external validation and model impact studies. Rather than developing yet another similar CVD risk prediction model, in this era of large datasets, future research should focus on externally validating and comparing head-to-head promising CVD risk models that already exist, on tailoring or even combining these models to local settings, and investigating whether these models can be extended by addition of new predictors. IntroductionCardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, 1 accounting for approximately one third of all deaths. 2 Prevention of CVD requires timely identification of people at increased risk to target effective dietary, lifestyle, or drug interventions. Over the past two decades, numerous prediction models have been developed, which mathematically combine multiple predictors to estimate the risk of developing CVD-for example, the Framingham, 3-5 SCORE, 6 and QRISK 7-9 models. Some of these prediction models are included in clinical guidelines for therapeutic management 10 11 and are increasingly advocated by health policymakers. In the United Kingdom, electronic health patient record systems now have QRISK2 embedded to calculate 10 year CVD risk.Several reviews have shown that there is an abundance of prediction models for a wide range of CVD outcomes. 12-14 However, the most comprehensive review 12 includes models published ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.