Imidazolium perchlorate has been synthesized and studied over a wide range of temperatures by differential scanning calorimetry, x-ray diffraction, proton magnetic resonance, optical observation, and dielectric spectroscopy. Polymorphic solid-solid phase transitions have been disclosed at 487, 373, and 247 K. The crystal structure at 298 K has been determined as trigonal, space group R3m, Z=1 with a=5.484(1) A and alpha=95.18(2) degrees. The imidazolium cations are strongly disordered, while the perchlorate ions are well ordered. At 385 K the crystal structure remains trigonal, space group R3m, a=5.554(1) A and alpha=95.30(2) degrees . Both ionic sublattices are orientationally disordered. Temperature evolution of the molecular dynamics of the imidazolium cation has been characterized. In spite of a high cationic disorder, dielectric measurements have revealed the polar properties of the crystal. It appears to be a new ferroelectric compound with the Curie point at 373 K. The spontaneous polarization originates predominantly from the behavior of slightly distorted perchlorate anion.
The application of ionic liquids (ILs) has grown enormously, from their use as simple solvents, catalysts, media in separation science, or electrolytes to that as task-specific, tunable molecular machines with appropriate properties. A thorough understanding of these properties and structure–property relationships is needed to fully exploit their potential, open new directions in IL-based research and, finally, properly implement the appropriate applications. In this work, we investigated the structure–properties relationships of a series of alkyltriethylammonium bis(trifluoromethanesulfonyl)imide [TEA-R][TFSI] ionic liquids in relation to their thermal behavior, structure organization, and self-diffusion coefficients in the bulk state using DSC, FT-IR, SAXS, and NMR diffusometry techniques. The phase transition temperatures were determined, indicating alkyl chain dependency. Fourier-transformed infrared spectroscopy studies revealed the structuration of the ionic liquids along with alkyl chain elongation. SAXS experiments clearly demonstrated the existence of polar/non-polar domains. The alkyl chain length influenced the expansion of the non-polar domains, leading to the expansion between cation heads in polar regions of the structured IL. 1H NMR self-diffusion coefficients indicated that alkyl chain elongation generally caused the lowering of the self-diffusion coefficients. Moreover, we show that the diffusion of anions and cations of ILs is similar, even though they vary in their size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.