A new macrocyclic DOTA-like ligand (BPAMD) for bone imaging and therapy containing a monoamide bis(phosphonic acid) bone-seeking group was designed and synthesized. Its lanthanide(III) complexes were prepared and characterized by 1H and 31P NMR spectroscopy. The Gd(III)-BPAMD complex was investigated in detail by 1H and 17O relaxometric studies to inspect parameters relevant for its potential application as an MRI contrast agent. Sorption experiments were conducted with Gd(III) and Tb(III) complexes using hydroxyapatite (HA) as a model of bone surface. Very effective uptake of the Gd-BPAMD complex by the HA surface was observed in NMR experiments. Radiochemical studies with the (160Tb-BPAMD)-HA system proved the sorption to be remarkably fast and strong on one hand and fully reversible on the other hand. The strong (Gd-BPAMD)-HA interaction was also supported by 1H NMRD measurements in the presence of a hydroxyapatite slurry, which showed an increase of the rotational correlation time upon adsorption of the complex on the HA surface, resulting in a significant relaxivity enhancement. The amide-bis(phosphonate) moiety is the only factor responsible for the binding of the complex to HA.
Lanthanide complexes of DOTA derivatives 2a (BPAMD) and 2b (BPAPD), having a monoamide pendant arm with a bis(phosphonate) moiety, were comparatively tested for application in MRI, radiotherapy, and bone pain palliation. (1)H, (31)P, and (17)O NMR spectroscopy show that they are nine-coordinated, with one water molecule in the first coordination sphere of the Ln(III) ion. The bis(phosphonate) moieties are not coordinated to the lanthanide and predominantly mono- and diprotonated at physiological pH. The parameters governing the longitudinal relaxivities of the Gd complexes are similar to those of other monoamides of DOTA reported in the literature. Upon adsorption on hydroxyapatite, the relaxivities at 20 MHz and 25 degrees C of Gd-2a and Gd-2b were 22.1 and 11 s(-1) mM(-1), respectively. An in vivo gamma-ray imaging study showed that the (177)Lu complexes of 2a and 2b have a high affinity for bones, particularly for growth plates and teeth with a prolonged retention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.