Combined scanning tunneling microscopy, temperature programmed desorption, photo stimulated desorption, and density functional theory studies have probed the formation and reactivity of highly-hydroxylated rutile TiO(2)(110) surfaces, which were prepared via a novel, photochemical route using trimethyl acetic acid (TMAA) dissociative adsorption and subsequent photolysis at 300 K. Deprotonation of TMAA molecules upon adsorption produces both surface bridging hydroxyls (OH(b)) and bidentate trimethyl acetate (TMA) species with a saturation coverage of nearly 0.5 monolayers (ML). Ultra-violet light irradiation selectively removes TMA species, producing a highly-hydroxylated surface with up to ~0.5 ML OH(b) coverage. At high coverages, the OH(b) species typically occupy second-nearest neighbor sites along the bridging oxygen row locally forming linear (2 × 1) structures of different lengths, although the surface is less ordered on a long scale. The annealing of the highly-hydroxylated surface leads to hydroxyl recombination and H(2)O desorption with ~100% yield, thus ruling out the diffusion of H into the bulk that has been suggested in the literature. In agreement with experimental data, theoretical results show that the recombinative H(2)O desorption is preferred over both H bulk diffusion and H(2) desorption processes.
There were different associations of FM and fat distribution with BMD in pre- and postmenopausal Chinese women. Increased central body fat had a negative association with BMD. Our findings may have significant implications in the prevention of menopause-related osteoporosis through reducing centralized fat deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.