Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have n + 1 (n = 1–4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date remain limited in composition to one or two transition metals. In this study, by implementing four transition metals, we report the synthesis of multi-principal-element high-entropy M4C3T x MXenes. Specifically, we introduce two high-entropy MXenes, TiVNbMoC3T x and TiVCrMoC3T x , as well as their precursor TiVNbMoAlC3 and TiVCrMoAlC3 high-entropy MAX phases. We used a combination of real and reciprocal space characterization (X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and scanning transmission electron microscopy) to establish the structure, phase purity, and equimolar distribution of the four transition metals in high-entropy MAX and MXene phases. We use first-principles calculations to compute the formation energies and explore synthesizability of these high-entropy MAX phases. We also show that when three transition metals are used instead of four, under similar synthesis conditions to those of the four-transition-metal MAX phase, two different MAX phases can be formed (i.e., no pure single-phase forms). This finding indicates the importance of configurational entropy in stabilizing the desired single-phase high-entropy MAX over multiphases of MAX, which is essential for the synthesis of phase-pure high-entropy MXenes. The synthesis of high-entropy MXenes significantly expands the compositional variety of the MXene family to further tune their properties, including electronic, magnetic, electrochemical, catalytic, high temperature stability, and mechanical behavior.
Owing to the presence of {111} facets, twin boundaries, and strain fields on the surface, noble-metal nanocrystals with an icosahedral shape have been reported with stellar performance toward an array of catalytic reactions. Here, we report the successful synthesis of Ru icosahedral nanocages with a face-centered cubic (fcc) structure by conformally coating Pd icosahedral seeds with ultrathin Ru shells, followed by selective removal of the Pd cores via chemical etching. We discovered that the presence of bromide ions was critical to the layer-by-layer deposition of Ru atoms. According to in situ XRD, the fcc structure in the Ru nanocages could be retained up to 300 °C before it was transformed into the conventional hexagonal close-packed (hcp) structure. Additionally, the icosahedral shape of the Ru nanocages could be largely preserved up to 300 °C. The Ru icosahedral nanocages with twin boundaries on the surface exhibited greatly enhanced activities toward both the reduction of 4-nitrophenol and decomposition of hydrazine than their cubic and octahedral counterparts. When benchmarked against the parental Pd@Ru core–shell nanocrystals, all the Ru nanocages displayed superior catalytic activities. First-principles density functional theory calculations also suggest that the fcc-Ru icosahedral nanocages containing residual Pd atoms are more promising than the conventional hcp-Ru solid nanoparticles in catalyzing nitrogen reduction for ammonia synthesis. With the subsurface impurities of Pd, the twin boundary regions of the icosahedral nanocages are able to stabilize the N2 dissociation transition state, reducing the overall reaction barrier and promoting the competition with the N2 desorption process.
Production of syngas with tunable CO/H2 ratio from renewable resources is an ideal way to provide a carbon-neutral feedstock for liquid fuel production. Ag is a benchmark electrocatalysts for CO2-to-CO conversion but high overpotential limits the efficiency. We synthesize AgP2 nanocrystals (NCs) with a greater than 3-fold reduction in overpotential for electrochemical CO2-to-CO reduction compared to Ag and greatly enhanced stability. Density functional theory calculations reveal a significant energy barrier decrease in the formate intermediate formation step. In situ X-ray absorption spectroscopy (XAS) shows that a maximum Faradaic efficiency is achieved at an average silver valence state of +1.08 in AgP2 NCs. A photocathode consisting of a n+p-Si wafer coated with ultrathin Al2O3 and AgP2 NCs achieves an onset potential of 0.2 V vs. RHE for CO production and a partial photocurrent density for CO at −0.11 V vs. RHE (j−0.11, CO) of −3.2 mA cm−2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.