Highlights d Enteric pathogens trigger reversible neuronal loss and longterm GI symptoms d Enteric infection-triggered neuronal loss is Nlrp6and caspase 11-dependent d Intestinal muscularis macrophages (MMs) rapidly respond to enteric pathogens d Neuronal death is limited by a MM-b 2 -adrenergic-arginase 1polyamine axis
Background
Despite improvements in cancer management, most pancreatic cancers are still diagnosed at an advanced stage. We have recently identified promoter DNA methylation of the genes
ADAMTS1
and
BNC1
as potential blood biomarkers of pancreas cancer. In this study, we validate this biomarker panel in peripheral cell-free tumor DNA of patients with pancreatic cancer.
Results
Sensitivity and specificity for each gene are as follows:
ADAMTS1
87.2% and 95.8% (AUC = 0.91; 95% CI 0.71–0.86) and
BNC1
64.1% and 93.7% (AUC = 0.79; 95% CI 0.63–0.78). When using methylation of either gene as a combination panel, sensitivity increases to 97.3% and specificity to 91.6% (AUC = 0.95; 95% CI 0.77–0.90). Adding pre-operative CA 19-9 values to the combined two-gene methylation panel did not improve sensitivity. Methylation of
ADAMTS1
was found to be positive in 87.5% (7/8) of stage I, 77.8% (7/9) of stage IIA, and 90% (18/20) of stage IIB disease. Similarly,
BNC1
was positive in 62.5% (5/8) of stage I patients, 55.6% (5/9) of stage IIA, and 65% (13/20) of patients with stage IIB disease. The two-gene panel (
ADAMTS1
and/or
BNC1
) was positive in 100% (8/8) of stage I, 88.9% (8/9) of stage IIA, and 100% (20/20) of stage IIB disease. The sensitivity and specificity of the two-gene panel for localized pancreatic cancer (stages I and II), where the cancer is eligible for surgical resection with curative potential, was 94.8% and 91.6% respectively. Additionally, the two-gene panel exhibited an AUC of 0.95 (95% CI 0.90–0.98) compared to 57.1% for CA 19-9 alone.
Conclusion
The methylation status of
ADAMTS1
and
BNC1
in cfDNA shows promise for detecting pancreatic cancer during the early stages when curative resection of the tumor is still possible. This minimally invasive blood-based biomarker panel could be used as a promising tool for diagnosis and screening in a select subset of high-risk populations.
Electronic supplementary material
The online version of this article (10.1186/s13148-019-0650-0) contains supplementary material, which is available to authorized users.
The gut microbiota affects tissue physiology, metabolism, and function of both the immune and nervous systems. We found that intrinsic enteric-associated neurons (iEAN) in mice are functionally adapted to the intestinal segment they occupy; ileal and colonic neurons are more responsive to microbial colonization than duodenal neurons. Specifically, a microbially-responsive subset of viscerofugal CART+ neurons, enriched in the ileum and colon, modulated feeding and glucose metabolism. These CART+ neurons send axons to the prevertebral ganglia and are poly-synaptically connected to the liver and pancreas. Microbiota depletion led to NLRP6– and Caspase 11-dependent loss of CART+ neurons, and impaired glucose regulation. Hence, iEAN subsets appear to be capable of regulating blood glucose levels independently from the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.