We identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.1027G>A (p.Gly343Arg) mutation. Human-derived neurons were generated that recaptured ACTL6B expression patterns in development from progenitor cell to post-mitotic neuron, validating the use of this model. Engineered knock-out of ACTL6B in wild-type human neurons resulted in profound deficits in dendrite development, a result recapitulated in two individuals with different bi-allelic mutations, and reversed on clonal genetic repair or exogenous expression of ACTL6B. Wholetranscriptome analyses and whole-genomic profiling of the BAF complex in wild-type and bi-allelic mutant ACTL6B neural progenitor cells and neurons revealed increased genomic binding of the BAF complex in ACTL6B mutants, with corresponding transcriptional changes in several genes including TPPP and FSCN1, suggesting that altered regulation of some cytoskeletal genes contribute to altered dendrite development. Assessment of bi-alleic and heterozygous ACTL6B mutations on an ACTL6B knock-out human background demonstrated that bi-allelic mutations mimic engineered deletion deficits while heterozygous mutations do not, suggesting that the former are loss of function and the latter are gain of function. These results reveal a role for ACTL6B in neurodevelopment and implicate another component of chromatin remodeling machinery in brain disease.
Major depressive disorder (MDD) is primarily treated with antidepressants, yet many patients fail to respond adequately, and identifying antidepressant response biomarkers is thus of clinical significance. Some hypothesis-driven investigations of epigenetic markers for treatment response have been previously made, but genome-wide approaches remain unexplored. Healthy participants (n = 112) and MDD patients (n = 211) between 18–60 years old were recruited for an 8-week trial of escitalopram treatment. Responders and non-responders were identified using differential Montgomery-Åsberg Depression Rating Scale scores before and after treatment. Genome-wide DNA methylation and gene expression analyses were assessed using the Infinium MethylationEPIC Beadchip and HumanHT-12 v4 Expression Beadchip, respectively, on pre-treatment peripheral blood DNA and RNA samples. Differentially methylated positions (DMPs) located in regions of differentially expressed genes between responders (n = 82) and non-responders (n = 95) were identified, and technically validated using a targeted sequencing approach. Three DMPs located in the genes CHN2 (cg23687322, p = 0.00043 and cg06926818, p = 0.0014) and JAK2 (cg08339825, p = 0.00021) were the most significantly associated with mRNA expression changes and subsequently validated. Replication was then conducted with non-responders (n = 76) and responders (n = 71) in an external cohort that underwent a similar antidepressant trial. One CHN2 site (cg06926818; p = 0.03) was successfully replicated. Our findings indicate that differential methylation at CpG sites upstream of the CHN2 and JAK2 TSS regions are possible peripheral predictors of antidepressant treatment response. Future studies can provide further insight on robustness of our candidate biomarkers, and greater characterization of functional components.
Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.