Type 2 diabetes (T2D) is a complicated systemic disease, and the exact pathogenetic molecular mechanism is unclear. Distinct histone modifications regulate gene expression in certain diseases, but little is known about histone epigenetics in diabetes. In the current study, C57BL/6 J mice were used to build T2D model, then treated with exendin-4 (10 μg/kg). Histone H3K9 and H3K23 acetylation, H3K4 monomethylation and H3K9 dimethylation were explored by Western blotting of liver histone extracts. Real-time polymerase chain reaction (PCR) was used to examine expression levels of diabetes-related genes, while chromatin immunoprecipitation (ChIP) was applied to analyze H3 and H3K9 acetylation, H3K4 monomethylation, and H3K9 dimethylation in the promoter of facilitated glucose transporter member 2 (Glut2) gene. The results showed that liver's total H3K4 monomethylation and H3K9 dimethylation was increased in diabetic mice, which was abrogated with the treatment of exendin-4. In contrast, H3K9 and H3K23 acetylation were reduced in diabetic mice, while exendin-4 only alleviated the reduction of H3K9 acetylation. Our data indicated that the progression of type 2 diabetes mellitus (T2D) is associated with global liver histone H3K9 and H3K23 acetylation, H3K4 monomethylation, and H3K9 dimethylation. Exploiting exact histone modify enzyme inhibitors, which may represent a novel strategy to prevent T2D.
Diabetes has been cited as the most challenging health problem in the twenty-first century. Accordingly, it is urgent to develop a new type of efficient and low-toxic antidiabetic medication. Since vanadium compounds have insulin-mimetic and potential hypoglycemic activities for type 1 and type 2 diabetes, a new trend has been developed using vanadium and organic ligands to form a new compound in order to increase the intestinal absorption and reduce the toxicity of vanadium compound. In the current investigation, a new organic vanadium compounds, vanadyl rosiglitazone, was synthesized and determined by infrared spectra. Vanadyl rosiglitazone and three other organic vanadium compounds were administered to the diabetic mice through oral administration for 5 weeks. The results of mouse model test indicated that vanadyl rosiglitazone could regulate the blood glucose level and relieve the symptoms of polydipsia, polyphagia, polyuria, and weight loss without side effects and was more effective than the other three organic vanadium compounds including vanadyl trehalose, vanadyl metformin, and vanadyl quercetin. The study indicated that vanadyl rosiglitazone presents insulin-mimetic activities, and it will be a good potential candidate for the development of a new type of oral drug for type 2 diabetes.
Ginkgo biloba seeds are important raw material for foods and medicines. A response surface method was used to obtain the following optimized extraction conditions for Ginkgo biloba seed extracts (GBSE) with the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability: 0.08 g/mL material-to-liquid ratio, 70% ethanol concentration, 47°C extraction temperature and extraction time of 22 min. Fourier transform infrared spectroscopy revealed the polysaccharide structure of GBSE from three varieties of Ginkgo biloba seeds (Fozhi, Maling and Yuanling seed varieties). The extract yield, polysaccharides, total phenolics and total flavonoids in the three varieties were 5.77–6.11%, 11.45–364.69 mg/g, 22.34–25.54 mg/g and 14.87–16.47 mg/g, respectively. The GBSE has good antioxidant ability, including DPPH-reducing activity (1842.73–2616.00 micromol [mmol] Trolox Equivalents [TE]/gram [g]), ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); 185.03–217.63 mmol TE/g) and ferric-reducing antioxidant power (FRAP; 220.46–230.77 mmol TE/g). This study provides a method for preparing GBSE with high antioxidant activity and improving the utilization value of Ginkgo biloba seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.