BackgroundCytokines are important mediators and regulators of host responses against foreign antigen, with their main function to orchestrate the functional activities of the cells of the immune system. However little is known about the role of cytokines in pathogenesis and immune responses caused by infectious bursa disease virus (IBDV). The aim of this study was to examine the transcripts of cell-mediated immune response-related cytokine genes in the bursal tissues of chickens infected with IBDVs of varying virulence to gain an understanding of pathological changes and mechanisms of immunosuppression caused by IBDV infection and the immune responses evoked.ResultsReal-time quantitative PCR analysis revealed that the expression levels of both Th1 [interferon (IFN)-γ, interleukins (IL)-2 and IL-12p40] and Th2 (IL-4, IL-5, IL-13 and IL-10) cytokines were significantly up-regulated following challenge with the H strain (vvIBDV) and up to 2- and 30-fold, respectively (P < 0.05). Following infection with the Ts strain (cell-adapted virus) these cytokine transcripts were up-regulated at 5 days post-infection (dpi), 2- and 13-fold respectively (P < 0.05), while the expression levels of IL-2 and IL-4 were not significantly different (P > 0.05). A higher degree of cytokine expression was induced by the H strain compared with the Ts strain.ConclusionThe results indicate that the expression of cell-mediated immune-related cytokine genes is strongly induced by IBDV, especially by the vvIBDV, H strain and reveal that these cytokines could play a crucial role in driving cellular immune responses during the acute phase of IBDV infection, and the cellular immune responses caused by IBDV of varying virulence are through different signaling pathways.
The 2009 influenza A H1N1 pandemic placed unprecedented demands on antiviral drug resources and the vaccine industry. Carrageenan, an extractive of red algae, has been proven to inhibit infection and multiplication of various enveloped viruses. The aim of this study was to examine the ability of κ-carrageenan to inhibit swine pandemic 2009 H1N1 influenza virus to gain an understanding of antiviral ability of κ-carrageenan. It was here demonstrated that κ-carrageenan had no cytotoxicity at concentrations below 1000 μg/ml. Hemagglutination, 50% tissue culture infectious dose (TCID50) and cytopathic effect (CPE) inhibition assays showed that κ-carrageenan inhibited A/Swine/Shandong/731/2009 H1N1 (SW731) and A/California/04/2009 H1N1 (CA04) replication in a dose-dependent fashion. Mechanism studies show that the inhibition of SW731 multiplication and mRNA expression was maximized when κ-carrageenan was added before or during adsorption. The result of Hemagglutination inhibition assay indicate that κ-carrageenan specifically targeted HA of SW731 and CA04, both of which are pandemic H1N/2009 viruses, without effect on A/Pureto Rico/8/34 H1N1 (PR8), A/WSN/1933 H1N1 (WSN), A/Swine/Beijing/26/2008 H1N1 (SW26), A/Chicken/Shandong/LY/2008 H9N2 (LY08), and A/Chicken/Shandong/ZB/2007 H9N2 (ZB07) viruses. Immunofluorescence assay and Western blot showed that κ-carrageenan also inhibited SW731 protein expression after its internalization into cells. These results suggest that κ-carrageenan can significantly inhibit SW731 replication by interfering with a few replication steps in the SW731 life cycles, including adsorption, transcription, and viral protein expression, especially interactions between HA and cells. In this way, κ-carrageenan might be a suitable alternative approach to therapy meant to address anti-IAV, which contains an HA homologous to that of SW731.
Interspecies nuclear transfer (INT) has been used as an invaluable tool for studying nucleus-cytoplasm interactions; and it may also be a method for rescuing endangered species whose oocytes are difficult to obtain. In the present study, we investigated interaction of the chicken genome with the rabbit oocyte cytoplasm. When chicken blastodermal cells were transferred into the perivitelline space of rabbit oocytes, 79.3% of the couplets were fused and 9.7% of the fused embryos developed to the blastocyst stage. Both M199 and SOF medium were used for culturing chicken-rabbit cloned embryos; embryo development was arrested at the 8-cell stage obtained in SOF medium, while the rates of morulae and blastocysts were 12.1 and 9.7%, respectively, in M199 medium. Polymerase chain reaction (PCR) amplification of nuclear DNA and karyotype analyses confirmed that genetic material of morulae and blastocysts was derived from the chicken donor cells. Analysis mitochondrial constitution of the chicken-rabbit cloned embryos found that mitochondria, from both donor cells and enucleated oocytes, co-existed. Our results suggest that: (1) chicken genome can coordinate with rabbit oocyte cytoplasm in early embryo development; (2) there may be an 8- to 16-cell stage block for the chicken-rabbit cloned embryos when cultured in vitro; (3) mitochondrial DNA from the chicken donor cells was not eliminated until the blastocyst stage in the chicken-rabbit cloned embryos; (4) factors existing in ooplasm for somatic nucleus reprogramming may be highly conservative.
Increasing evidence that mutation of planar cell polarity (PCP) genes contributes to human cranial NTD susceptibility prompted us to hypothesize that rare variants of genes in the core apical–basal polarity (ABP) pathway are risk factors for cranial NTDs. In this study, we screened for rare genomic variation of PARD3 in 138 cranial NTD cases and 274 controls. Overall, the rare deleterious variants of PARD3 were significantly associated with increased risk for cranial NTDs (11/138 vs.7/274, p<0.05, OR=3.3). These NTD-specific variants were significantly enriched in the aPKC-binding region (6/138 vs. 0/274, p<0.01). The East Asian cohort in the ExAC database and another Chinese normal cohort further supported this association. Over-expression analysis in HEK293T and MDCK cells confirmed abnormal aPKC binding or interaction for two PARD3 variants (p.P913Q and p.D783G), resulting in defective tight junction formation via disrupted aPKC binding. Functional analysis in human neural progenitor cells and chick embryos revealed that PARD3 knockdown gave rise to abnormal cell polarity and compromised the polarization process of neuroepithelial tissue. Our studies suggest that rare deleterious variants of PARD3 in the aPKC-binding region contribute to human cranial NTDs, possibly by disrupting apical tight junction formation and subsequent polarization process of the neuroepithelium.
In the current study, we investigate changes in CD4+CD25+ cells in chickens during infectious bursal disease virus (IBDV) infection. The percentage of CD4+CD25+ cells in lymph organs, e.g., the thymus, spleen, bursa of Fabricius and peripheral blood, during the first 1–5 days post infection (dpi) was assessed by flow cytometry. The data revealed a remarkable decrease in the percentage of CD4+CD25+ cells in the thymus from 1 to 5 dpi and in the spleen during early infection. An increase of the percentage of CD4+CD25+ cells among peripheral blood lymphocytes was observed during the first two days of IBDV infection. Additionally, CD4+CD25+ cells infiltrated the bursa along with CD4+ cells after IBDV infection. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the mRNA levels of immune-related cytokines in IBDV-infected thymus and bursa of Fabricius tissues. The data revealed that IBDV caused a significant increase in interleukin (IL)-10 mRNA levels, with the Harbin-1 strain (vvIBDV) inducing higher IL-10 expression than the Ts strain. Taken together, our data suggest that chicken CD4+CD25+ cells may participate in IBDV pathogenicity by migrating from their sites of origin and storage, the thymus and spleen, to the virally targeted bursa of Fabricius during IBDV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.