Lead, cadmium, mercury, and arsenic are common environmental pollutants in industrialized countries, but their combined impact on children’s health is little known. We studied their effects on two main targets, the renal and dopaminergic systems, in > 800 children during a cross-sectional European survey. Control and exposed children were recruited from those living around historical nonferrous smelters in France, the Czech Republic, and Poland. Children provided blood and urine samples for the determination of the metals and sensitive renal or neurologic biomarkers. Serum concentrations of creatinine, cystatin C, and β2-microglobulin were negatively correlated with blood lead levels (PbB), suggesting an early renal hyperfiltration that averaged 7% in the upper quartile of PbB levels (> 55 μg/L; mean, 78.4 μg/L). The urinary excretion of retinol-binding protein, Clara cell protein, and N-acetyl-β-d-glucosaminidase was associated mainly with cadmium levels in blood or urine and with urinary mercury. All four metals influenced the dopaminergic markers serum prolactin and urinary homovanillic acid, with complex interactions brought to light. Heavy metals polluting the environment can cause subtle effects on children’s renal and dopaminergic systems without clear evidence of a threshold, which reinforces the need to control and regulate potential sources of contamination by heavy metals.
The most severe BAM occurs in CD patients after resection of the distal ileum, but BAM can occur in surgically untreated CD patients, regardless of disease localization. Laboratory tests for BAM should become a part of the algorithm for diagnosis of CD to identify patients who might respond to therapies such as bile acid sequestrants. FGF19 appears to be a reliable marker of BAM.
There is evidence that increased frequency of chromosomal aberration (CA) in peripheral blood lymphocytes is a predictor of cancer, but further data are needed to better characterize CA as marker of cancer risk. From the archives of 15 laboratories we gathered cytogenetic records of 11,834 subjects who were free of cancer at the moment of blood drawing and who underwent cytogenetic examination for preventive purposes in the Czech Republic during 1975–2000. We linked these records to the national cancer registry, revealing a total of 485 cancer cases. Subjects were classified according to the percentiles of CA distribution within each laboratory as low (0–33rd percentile), medium (34–66th percentile), and high (66–100th percentile). Subjects were further classified by occupational exposure and by subclass of CA. We found a significant association between the overall cancer incidence and the presence of chromosome-type aberrations [relative risk (RR) for high vs. low CA level = 1.24; 95% confidence interval (CI), 1.03–1.50] but not chromatid-type aberrations. Stomach cancer showed a strong association with frequency of total CA (RR = 7.79; 95% CI, 1.01–60.0). The predictivity of CA observed in subjects exposed to various classes of carcinogens did not significantly differ from the group of nonexposed subjects. This study contributes to validation of CA as a predictive marker of cancer risk, in particular, of stomach cancer; the association between CA frequency and cancer risk might be limited to chromosome-type aberrations.
Colorectal cancer represents a complex disease where susceptibility may be influenced by genetic polymorphisms in the DNA repair system. In the present study we investigated the role of nine single nucleotide polymorphisms in eight DNA repair genes on the risk of colorectal cancer in a hospital-based case-control population (532 cases and 532 sex- and age-matched controls). Data analysis showed that the variant allele homozygotes for the Asn148Glu polymorphism in the APE1 gene were at a statistically non-significant increased risk of colorectal cancer. The risk was more pronounced for colon cancer (odds ratio, OR: 1.50; 95% confidence interval, CI: 1.01-2.22; p=0.05). The data stratification showed increased risk of colorectal cancer in the age group 64-86 years in both individuals heterozygous (OR: 1.79; 95% CI: 1.04-3.07; p=0.04) and homozygous (OR: 2.57; 95% CI: 1.30-5.06; p=0.007) for the variant allele of the APE1 Asn148Glu polymorphism. Smokers homozygous for the variant allele of the hOGG1 Ser326Cys polymorphism showed increased risk of colorectal cancer (OR: 4.17; 95% CI: 1.17-15.54; p=0.03). The analysis of binary genotype combinations showed increased colorectal cancer risk in individuals simultaneously homozygous for the variant alleles of APE1 Asn148Glu and hOGG1 Ser326Cys (OR: 6.37; 95% CI: 1.40-29.02; p=0.02). Considering the subtle effect of the DNA repair polymorphisms on the risk of colorectal cancer, exploration of gene-gene and gene-environmental interactions with a large sample size with sufficient statistical power are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.