The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, one of two tasks was devoted to learning dependency parsers for a large number of languages, in a realworld setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe data preparation, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.
Task 18 at SemEval 2015 defines BroadCoverage Semantic Dependency Parsing (SDP) as the problem of recovering sentence-internal predicate-argument relationships for all content words, i.e. the semantic structure constituting the relational core of sentence meaning. In this task description, we position the problem in comparison to other language analysis sub-tasks, introduce and compare the semantic dependency target representations used, and summarize the task setup, participating systems, and main results.
Task 8 at SemEval 2014 defines Broad-Coverage Semantic Dependency Parsing (SDP) as the problem of recovering sentence-internal predicate-argument relationships for all content words, i.e. the semantic structure constituting the relational core of sentence meaning. In this task description, we position the problem in comparison to other sub-tasks in computational language analysis, introduce the semantic dependency target representations used, reflect on high-level commonalities and differences between these representations, and summarize the task setup, participating systems, and main results.
Universal dependencies (UD) is a framework for morphosyntactic annotation of human language, which to date has been used to create treebanks for more than 100 languages. In this article, we outline the linguistic theory of the UD framework, which draws on a long tradition of typologically oriented grammatical theories. Grammatical relations between words are centrally used to explain how predicate–argument structures are encoded morphosyntactically in different languages while morphological features and part-of-speech classes give the properties of words. We argue that this theory is a good basis for cross-linguistically consistent annotation of typologically diverse languages in a way that supports computational natural language understanding as well as broader linguistic studies.
The 2019 Shared Task at the Conference for Computational Language Learning (CoNLL) was devoted to Meaning Representation Parsing (MRP) across frameworks. Five distinct approaches to the representation of sentence meaning in the form of directed graphs were represented in the training and evaluation data for the task, packaged in a uniform graph abstraction and serialization. The task received submissions from eighteen teams, of which five do not participate in the official ranking because they arrived after the closing deadline, made use of extra training data, or involved one of the task co-organizers. All technical information regarding the task, including system submissions, official results,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.