Sphingosine 1-phosphate is a bioactive sphingolipid that regulates cell growth and suppresses programmed cell death. The biosynthesis of sphingosine 1-phosphate is catalyzed by sphingosine kinase (SK) but the mechanism by which the subcellular localization and activity of SK is regulated in response to various stimuli is not fully understood. To elucidate the origin and structural determinant of the specific subcellular localization of SK, we performed biophysical and cell studies of human SK1 (hSK1) and selected mutants. In vitro measurements showed that hSK1 selectively bound phosphatidylserine over other anionic phospholipids and strongly preferred the plasma membrane-mimicking membrane to other cellular membrane mimetics. Mutational analysis indicates that conserved Thr 54 and Asn 89 in the putative membrane-binding surface are essential for lipid selectivity and membrane targeting both in vitro and in the cell. Also, phosphorylation of Ser 225 enhances the membrane affinity and plasma membrane selectivity of hSK1, presumably by modulating the interaction of Thr 54 and Asn 89 with the membrane. Collectively, these studies suggest that the specific plasma membrane localization and activation of SK1 is mediated largely by specific lipid-protein interactions.Sphingosine 1-phosphate (S1P) 3 is a recently identified bioactive lipid that can act both extracellularly and intracellularly as a first and a second messenger, respectively (1). It has been shown that S1P is excreted into serum from platelets and binds members of the endothelial differentiation gene receptor family (S1P1-5) to activate cellular processes such as differentiation, migration, and mitogenesis (2). Intracellularly, S1P has been implicated in signaling cascades that lead to cytoskeletal changes, motility, release of intracellular Ca 2ϩ stores, and protection from apoptosis (3-6). S1P is formed from sphingosine (SPH) by sphingosine kinase (SK) and is degraded by S1P lyase and S1P phosphatases (1). In the resting state of cells, the balance between S1P formation and degradation maintains the low basal levels of S1P. However, cellular S1P levels have been shown to increase rapidly and transiently by agonists that activate SK, such as tumor necrosis factor-␣ (7, 8), platelet-derived growth factor (9), nerve growth factor (10, 11), muscarinic acetylcholine agonists (12), or phorbol esters (13,14).Two types of mammalian SKs (SK1 and SK2) have been characterized so far (15, 16), both of which are primarily cytosolic proteins. A recent study suggested that a phorbol ester, phorbol 12-myristate 13-acetate (PMA), induces the protein kinase C (PKC)-mediated phosphorylation and the localization of SK1 to the plasma membrane in human embryonic kidney (HEK) 293 cells (17), which leads to enhanced release of S1P to the media. Subsequently, it was reported that PMA and tumor necrosis factor-␣ induced the phosphorylation of Ser 225 of SK1 through the activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, which resulted in pla...
The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti-/pro-apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N-terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution; the residue S92 is a predicted CaMKII phosphorylation site. The assembly of the mitochondrial calcium uniporter complex (uniplex) and the interaction with the MCU regulators such as the mitochondrial calcium uptake-1 and mitochondrial calcium uptake-2 proteins (MICU1 and MICU2) are not affected by the deletion of MCU NTD. However, the expression of the S92A mutant or a NTD deletion mutant failed to restore mitochondrial Ca2+ uptake in a stable MCU knockdown HeLa cell line and exerted dominant-negative effects in the wild-type MCU-expressing cell line. These results suggest that the NTD of MCU is essential for the modulation of MCU function, although it does not affect the uniplex formation.
BackgroundCinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model.MethodsWater soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model.ResultsCinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro.ConclusionOur study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers.
Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress.
Myosin II is an actin-binding protein composed of MHC (myosin heavy chain) IIs, RLCs (regulatory light chains) and ELCs (essential light chains). Myosin II expressed in non-muscle tissues plays a central role in cell adhesion, migration and division. The regulation of myosin II activity is known to involve the phosphorylation of RLCs, which increases the Mg2+-ATPase activity of MHC IIs. However, less is known about the details of RLC-MHC II interaction or the loss-of-function phenotypes of non-muscle RLCs in mammalian cells. In the present paper, we investigate three highly conserved non-muscle RLCs of the mouse: MYL (myosin light chain) 12A (referred to as MYL12A), MYL12B and MYL9 (MYL12A/12B/9). Proteomic analysis showed that all three are associated with the MHCs MYH9 (NMHC IIA) and MYH10 (NMHC IIB), as well as the ELC MYL6, in NIH 3T3 fibroblasts. We found that knockdown of MYL12A/12B in NIH 3T3 cells results in striking changes in cell morphology and dynamics. Remarkably, the levels of MYH9, MYH10 and MYL6 were reduced significantly in knockdown fibroblasts. Comprehensive interaction analysis disclosed that MYL12A, MYL12B and MYL9 can all interact with a variety of MHC IIs in diverse cell and tissue types, but do so optimally with non-muscle types of MHC II. Taken together, our study provides direct evidence that normal levels of non-muscle RLCs are essential for maintaining the integrity of myosin II, and indicates that the RLCs are critical for cell structure and dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.