Novel amine bis(phenolate) zirconium dibenzyl complexes were synthesized in quantitative yields from a versatile family of chelating amine−bis((2-hydroxyaryl)methyl) ligand precursors, their X-ray structures solved, and their reactivity in the polymerization of 1-hexene in the presence of B(C6F5)3 studied. Several minor peripheral structural modifications were studied and found to have a major influence on the catalyst performance. Thus, a variety of reactivities, ranging from extremely high to negligible, were obtained, demonstrating a unique structure−reactivity relationship. This relationship is partially revealed from the crystal structures of the precatalysts, indicating similar [ONO] ligand cores in all structures solved. A correlation between the solid and the solution structures is obtained from 1H NMR spectra, which reveal a rigid binding of the ligand to the metal. The solid structures are therefore proposed to serve as reliable references when studying structure−reactivity relationships. The most significant structural parameter was found to be the existence of an extra donor located on a pendant arm. [ONO]-type pentacoordinate complexes lacking such an additional donor are rapidly deactivated and lead only to traces of oligomers. On the other hand, hexacoordinate complexes based on [ONNO]-type ligands, in which strong donation of a side donor to the metal is obtained through formation of a five-membered chelate, lead to extremely reactive polymerization catalysts. The nitrogen hybridization and aromatic ring substituents have a more subtle effect on reactivity. Increasing the chelate size results in either no binding of the side donor, yielding negligible reactivity, or strong binding yet moderate polymerization reactivity. Increasing the steric bulk on the donor results in weakening of the metal−donor bond, leading to a moderate oligomerization catalyst. The sidearm nitrogen is therefore proposed to play a crucial role in determining the propagation process rate, as well as the propagation/termination rate ratio.
The synthesis of alkoxotitanium(IV) and -zirconium(IV) complexes of seven chelating tetradentate di- or trianionic amine-phenolate ligands belonging to three families and their application in L-lactide polymerization are described. The isopropoxotitanium complexes were synthesized by a direct reaction between the ligand precursors and titanium tetraisopropoxide, whereas the zirconium complexes were synthesized by various routes. For titanium, complexes of all seven ligands could be synthesized. For zirconium, the hexacoordinate complexes derived from all dianionic ligands were synthesized; however, the only pentacoordinate complex that could be produced was the one derived from the bulky trianionic ligand. X-ray structures of zirconium complexes of the three families indicated a substantial pi donation from the alkoxo ligand to the metal. All complexes were found to be active lactide polymerization catalysts, and their activity was found to depend strongly on the metal, the coordination number around the metal, and the phenolate substituents but not on the ligand backbone.
Several [ONXO]-type zirconium and hafnium dibenzyl complexes of amine bis(phenolate) ligands, where X is a heteroatom donor located on a pendant arm, were synthesized directly from the ligand precursors and the corresponding tetrabenzylmetal complexes in quantitative yields (X = N, O, S). All complexes exhibited remarkable activities in the polymerization of 1-hexene, yielding high-molecular-weight polymers, the highest activity being unprecedented under the conditions employed. An unexpected metal-dependent activity pattern was demonstrated. The high activity of the complexes is derived from the binding of the side-arm donor to the metal and is affected by its nature. The activity order of the zirconium complexes as a function of the side-arm donor was found to be OMe > NMe2 > SMe (5:2:1). The X-ray structures of all zirconium complexes were solved and revealed very similar binding of the [ONO] ligand cores to the metal. The distances between the side-arm donor atoms and the zirconium are relatively long (Zr−O, 2.45 Å; Zr−N, 2.59 Å; Zr−S, 2.86 Å). The X-ray structures of all hafnium complexes were solved as well and found to be closely related to those of the zirconium analogues (Hf−O, 2.45 Å; Hf−N, 2.56 Å; Hf−S, 2.84 Å). However, the activity order was found to be different in the hafnium series, namely SMe > OMe > NMe2 (3.5:1.5:0.2), the [ONSO]-type complex exhibiting the highest activity ever reported for a hafnium complex under the conditions employed. Various NMR experiments supported the notion that the side-arm donor remains attached to the metal in the reactive compounds, which exist as well-separated ion pairs.
An amine bis(phenolate) dibenzyl titanium complex having a methoxy donor on a side arm leads, upon activation with tris(pentafluorophenyl)borane, to unique living properties in alpha-olefin polymerization: exceptionally high molecular weight poly(1-hexene) is obtained in a living fashion at room temperature, living polymerization of 1-hexene is obtained above room temperature, and block copolymerization of 1-hexene and 1-octene at room temperature is described as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.