l e t t e r sBamboo represents the only major lineage of grasses that is native to forests and is one of the most important nontimber forest products in the world. However, no species in the Bambusoideae subfamily has been sequenced. Here, we report a high-quality draft genome sequence of moso bamboo (P. heterocycla var. pubescens). The 2.05-Gb assembly covers 95% of the genomic region. Gene prediction modeling identified 31,987 genes, most of which are supported by cDNA and deep RNA sequencing data. Analyses of clustered gene families and gene collinearity show that bamboo underwent whole-genome duplication 7-12 million years ago. Identification of gene families that are key in cell wall biosynthesis suggests that the whole-genome duplication event generated more gene duplicates involved in bamboo shoot development. RNA sequencing analysis of bamboo flowering tissues suggests a potential connection between droughtresponsive and flowering genes.Bamboo is one of the most important non-timber forest products in the world. About 2.5 billion people depend economically on bamboo, and international trade in bamboo amounts to over 2.5 billion US dollars per year 1 . Bamboo has a rather striking life history, characterized by a prolonged vegetative phase lasting decades before flowering, thereby inhibiting genetic improvement. Recent genomic studies in bamboo have included genome-wide full-length cDNA sequencing 2 , chloroplast genome sequencing 3 , identification of syntenic genes between bamboo and other grasses 4 and phylogenetic analysis of Bambusoideae subspecies 5 . Fifty-nine simple sequence repeat markers from rice and sugarcane were used in the genetic diversity analyses of 23 bamboo species 6 , and 2 species-specific sequence-characterized amplified region markers were developed in the identification of different bamboo species 7 .Here, we report the draft genome of moso bamboo, a large woody bamboo that has ecological, economic and cultural value in Asia and accounts for ~70% of the total bamboo growth area. Comparative genome-wide analyses of bamboo to other grass species, including rice, maize and sorghum, yielded new genetic insights into the rapid and marked phenotypic and ecological divergence of bamboo and closely related grasses.The moso bamboo genome contains 24 pairs of chromosomes 8 (2n = 48) and is characteristic of a diploid (Supplementary Fig. 1a). We conducted a flow cytometry analysis and estimated that it had a genome size of 2.075 Gb (2C = 4.24 pg; Supplementary Fig. 1b), which was very close to that estimated in a previous report 9 .Because it is difficult to generate an inbred line of moso bamboo, owing to its infrequent sexual reproduction and the long periods of time between flowering intervals, we selected five plants from a single individual rhizome of the moso bamboo ecotype (P. heterocycla var. pubescens) and performed whole-genome shotgun sequencing. We generated 295 Gb of raw sequence data (approximately 147-fold coverage), including Illumina short reads and 10,327 pairs of BAC end ...
BackgroundBamboo is one of the most important nontimber forestry products worldwide. However, a chromosome-level reference genome is lacking, and an evolutionary view of alternative splicing (AS) in bamboo remains unclear despite emerging omics data and improved technologies.ResultsHere, we provide a chromosome-level de novo genome assembly of moso bamboo (Phyllostachys edulis) using additional abundance sequencing data and a Hi-C scaffolding strategy. The significantly improved genome is a scaffold N50 of 79.90 Mb, approximately 243 times longer than the previous version. A total of 51,074 high-quality protein-coding loci with intact structures were identified using single-molecule real-time sequencing and manual verification. Moreover, we provide a comprehensive AS profile based on the identification of 266,711 unique AS events in 25,225 AS genes by large-scale transcriptomic sequencing of 26 representative bamboo tissues using both the Illumina and Pacific Biosciences sequencing platforms. Through comparisons with orthologous genes in related plant species, we observed that the AS genes are concentrated among more conserved genes that tend to accumulate higher transcript levels and share less tissue specificity. Furthermore, gene family expansion, abundant AS, and positive selection were identified in crucial genes involved in the lignin biosynthetic pathway of moso bamboo.ConclusionsThese fundamental studies provide useful information for future in-depth analyses of comparative genome and AS features. Additionally, our results highlight a global perspective of AS during evolution and diversification in bamboo.
BackgroundWith the availability of rice and sorghum genome sequences and ongoing efforts to sequence genomes of other cereal and energy crops, the grass family (Poaceae) has become a model system for comparative genomics and for better understanding gene and genome evolution that underlies phenotypic and ecological divergence of plants. While the genomic resources have accumulated rapidly for almost all major lineages of grasses, bamboo remains the only large subfamily of Poaceae with little genomic information available in databases, which seriously hampers our ability to take a full advantage of the wealth of grass genomic data for effective comparative studies.ResultsHere we report the cloning and sequencing of 10,608 putative full length cDNAs (FL-cDNAs) primarily from Moso bamboo, Phyllostachys heterocycla cv. pubescens, a large woody bamboo with the highest ecological and economic values of all bamboos. This represents the third largest FL-cDNA collection to date of all plant species, and provides the first insight into the gene and genome structures of bamboos. We developed a Moso bamboo genomic resource database that so far contained the sequences of 10,608 putative FL-cDNAs and nearly 38,000 expressed sequence tags (ESTs) generated in this study.ConclusionAnalysis of FL-cDNA sequences show that bamboo diverged from its close relatives such as rice, wheat, and barley through an adaptive radiation. A comparative analysis of the lignin biosynthesis pathway between bamboo and rice suggested that genes encoding caffeoyl-CoA O-methyltransferase may serve as targets for genetic manipulation of lignin content to reduce pollutants generated from bamboo pulping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.