Anti-aromatic compounds, as well as small cyclic alkynes or carbynes, are particularly challenging synthetic goals. The combination of their destabilizing features hinders attempts to prepare molecules such as pentalyne, an 8π-electron anti-aromatic bicycle with extremely high ring strain. Here we describe the facile synthesis of osmapentalyne derivatives that are thermally viable, despite containing the smallest angles observed so far at a carbyne carbon. The compounds are characterized using X-ray crystallography, and their computed energies and magnetic properties reveal aromatic character. Hence, the incorporation of the osmium centre not only reduces the ring strain of the parent pentalyne, but also converts its Hückel anti-aromaticity into Craig-type Möbius aromaticity in the metallapentalynes. The concept of aromaticity is thus extended to five-membered rings containing a metal-carbon triple bond. Moreover, these metal-aromatic compounds exhibit unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement.
The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is 460% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid.
Zinc-dependent histone deacetylase 8 (HDAC8) catalyzes the removal of acetyl moieties from histone tails, and is critically involved in regulating chromatin structure and gene expression. The detailed knowledge of its catalytic process is of high importance since it has been established as a most promising target for the development of new anti-tumor drugs. By employing BornOppenheimer ab initio QM/MM molecular dynamics simulations and umbrella sampling, a stateof-the-art approach to simulate enzyme reactions, we have provided further evidences against the originally proposed general acid-base catalytic pair mechanism for Zinc-dependent histone deacetylases. Instead, our results indicated that HDAC8 employs a proton-shuttle catalytic mechanism, in which a neutral His143 first serves as the general base to accept a proton from the zinc-bound water molecule in the initial rate-determining nucleophilic attack step, and then shuttles it to the amide nitrogen atom to facilitate the cleavage of the amide bond. During the deacetylation process, the Zn 2+ ion changes its coordination mode and plays multiple catalytic roles. For the K + ion, which is located about 7 Å from the catalytic Zn 2+ ion and conserved in class I and II HDACs, our simulations indicated that its removal would lead to the different transition state structure and a higher free energy reaction barrier for the rate-determining step. It is found that the existence of this conserved K + ion would enhance the substrate binding, increase the basicity of His143, strengthen the catalytic role of zinc ion and improve the transition state stabilization by the enzyme environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.