Although single-cell RNA-seq is revolutionizing biology, data interpretation remains a challenge. We present SCENIC for the simultaneous reconstruction of gene regulatory networks and identification of cell states. We apply SCENIC to a compendium of single-cell data from tumors and brain, and demonstrate that the genomic regulatory code can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.
Single-cell RNA-seq allows building cell atlases of any given tissue and infer the dynamics of cellular state transitions during developmental or disease trajectories. Both the maintenance and transitions of cell states are encoded by regulatory programs in the genome sequence. However, this regulatory code has not yet been exploited to guide the identification of cellular states from single-cell RNA-seq data. Here we describe a computational resource, called SCENIC (Single Cell rEgulatory Network Inference and Clustering), for the simultaneous reconstruction of gene regulatory networks (GRNs) and the identification of stable cell states, using single-cell RNA-seq data. SCENIC outperforms existing approaches at the level of cell clustering and transcription factor identification. Importantly, we show that cell state identification based on GRNs is robust towards batch-effects and technical-biases. We applied SCENIC to a compendium of single-cell data from the mouse and human brain and demonstrate that the proper combinations of transcription factors, target genes, enhancers, and cell types can be identified. Moreover, we used SCENIC to map the cell state landscape in melanoma and identified a gene regulatory network underlying a proliferative melanoma state driven by MITF and STAT and a contrasting network controlling an invasive state governed by NFATC2 and NFIB. We further validated these predictions by showing that two transcription factors are predominantly expressed in early metastatic sentinel lymph nodes. In summary, SCENIC is the first method to analyze scRNA-seq data using a network-centric, rather than cell-centric approach. SCENIC is generic, easy to use, and flexible, and allows for the simultaneous tracing of genomic regulatory programs and the mapping of cellular identities emerging from these programs. Availability: SCENIC is available as an R workflow based on three new R/Bioconductor packages: GENIE3, RcisTarget and AUCell. As scalable alternative to GENIE3, we also provide GRNboost, paving the way towards the network analysis across millions of single cells.
Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.