Heading date and photoperiod sensitivity are fundamental traits that determine rice adaptation to a wide range of geographic environments. By quantitative trait locus (QTL) mapping and candidate gene analysis using whole-genome re-sequencing, we found that Oryza sativa Pseudo-Response Regulator37 (OsPRR37; hereafter PRR37) is responsible for the Early heading7-2 (EH7-2)/Heading date2 (Hd2) QTL which was identified from a cross of late-heading rice 'Milyang23 (M23)' and early-heading rice 'H143'. H143 contains a missense mutation of an invariantly conserved amino acid in the CCT (CONSTANS, CO-like, and TOC1) domain of PRR37 protein. In the world rice collection, different types of nonfunctional PRR37 alleles were found in many European and Asian rice cultivars. Notably, the japonica varieties harboring nonfunctional alleles of both Ghd7/Hd4 and PRR37/Hd2 flower extremely early under natural long-day conditions, and are adapted to the northernmost regions of rice cultivation, up to 53° N latitude. Genetic analysis revealed that the effects of PRR37 and Ghd7 alleles on heading date are additive, and PRR37 down-regulates Hd3a expression to suppress flowering under long-day conditions. Our results demonstrate that natural variations in PRR37/Hd2 and Ghd7/Hd4 have contributed to the expansion of rice cultivation to temperate and cooler regions.
Bimetallic nanoparticles (NPs) usually exhibit some novel properties due to the synergistic effects of the two distinct metals, which is expected to play an important role in the field of gas sensing. PdPt bimetal NPs with Pd-rich shell and Pt-rich core were successfully synthesized and used to modify SnO 2 nanosheets. The 1P-PdPt/SnO 2 -A sensor obtained by self-assemblies of PdPt NPs exhibited temperature-dependent dual selectivity to CO at 100 °C and CH 4 at 320 °C. Furthermore, the sensor possessed good long term stability and antihumidity interference. The activation energy of adsorption for CO and CH 4 were estimated by the temperature-dependent response process modeled using Langmuir adsorption kinetics, which proved that the lower activation energy of adsorption corresponded to better sensing performance. The gas-sensing mechanism based on the diffusion depth of the tested gas in the sensing layer was discussed. The dramatically improved sensing performance could be ascribed to the high catalytic activity of PdPt bimetal, the electron sensitization of PdO, and Schottky barrier-type junctions at the interface between SnO 2 and PdPt NPs. Our present results demonstrate that bimetal NPs with special structure and components can significantly improve the gas-sensing performance of metal oxide semiconductor and the obtained sensor has great potential in monitoring coal mine gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.