A simple one-pot solvothermal method is reported to synthesize VS nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm , a small Tafel slope of 36 mV dec , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆G ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.