Hepatitis E virus (HEV) can lead to high mortality during pregnancy. This study was to investigate the adverse pregnancy outcomes caused by different HEV genotypes and their prevention by HEV 239 vaccine in rabbits. Forty-two female rabbits were randomly and equally divided into 7 groups (A-G). HEV 239 vaccine and a placebo were administered to groups E (10 μg×2), F (5 μg×2) and G (1 mL of PBS×2) before copulation. After pregnancy, 1 mL of 1.5×106 copies/mL rabbit HEV3 was inoculated to groups A, E, F and G, swine HEV4/human HEV3 to groups B/C, and group D was a negative control. Anti-HEV antibody, HEV RNA, and alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels were monitored. Pregnant rabbits infected by HEV manifested HEV infection symptoms including fecal virus shedding, ALT/AST elevation, and histopathological changes, and adverse pregnancy outcomes. Immunized pregnant rabbits in groups E and F showed no HEV infection symptoms and adverse outcomes. The newborn rabbits delivered by pregnant rabbits with/without immunization showed without/with HEV infection symptoms. This study demonstrated that multiple genotypes of HEV infection can cause adverse outcomes and HEV 239 vaccine can prevent HEV-related adverse outcomes in pregnant rabbits.
Background and Aims HEV infection can lead to chronicity and rapid progression to liver fibrosis and cirrhosis in immunocompromised organ transplant recipients. Robust animal models are urgently needed to study the pathogenesis and test the efficacy of vaccines and antiviral drugs in immunosuppressed settings. Approach and Results Cyclosporin A was used to induce immunosuppression. Rabbits were challenged with genotype 3 or 4 HEV (i.e., the rabbit‐derived HEV3 and human‐derived HEV3 or HEV4). We assessed HEV markers within 13 weeks post inoculation (wpi) and pathological changes by hematoxylin and eosin and Masson staining at 4, 8, or 13 wpi. Chronic HEV infection was successfully established in immunocompromised rabbits. HEV RNA and/or antigens were detected in the liver, kidney, intestine, urine, and cerebrospinal fluid samples. Chronically infected animals exhibited typical characteristics of liver fibrosis development. Intrahepatic transcriptomic analysis indicated activation of both innate and adaptive immunity. Establishment of HEV chronicity likely contributed to the inhibited T‐cell immune response. Ribavirin is effective in clearing HEV infection in immunocompromised rabbits. Most interestingly, vaccination completed before immunosuppression conferred full protection against both HEV3 and HEV4 infections, but vaccination during immunosuppression was only partially protective, and the efficacy did not improve with increased or additional vaccine doses. Conclusions The immunocompromised rabbit model of both chronic HEV3 and HEV4 infection that was established captured the key features of chronic HEV infection in transplant patients, including liver fibrogenesis, and revealed the distinct effectiveness of vaccination administered before or under immunosuppression. This rabbit model is valuable for understanding the pathogenesis of chronic hepatitis E, as well as for evaluating antiviral agents and vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.