Water vapor sorption in salt hydrates is one of the most promising means for compact, low loss, and long-term storage of solar heat in the built environment. One of the most interesting salt hydrates for compact seasonal heat storage is magnesium sulfate heptahydrate (MgSO4⋅7H2O). This paper describes the characterization of MgSO4⋅7H2O to examine its suitability for application in a seasonal heat storage system for the built environment. Both charging (dehydration) and discharging (hydration) behaviors of the material were studied using thermogravimetric differential scanning calorimetry, X-ray diffraction, particle distribution measurements, and scanning electron microscope. The experimental results show that MgSO4⋅7H2O can be dehydrated at temperatures below 150°C, which can be reached by a medium temperature (vacuum tube) collector. Additionally, the material was able to store 2.2 GJ/m3, almost nine times more energy than can be stored in water as sensible heat. On the other hand, the experimental results indicate that the release of the stored heat is more difficult. The amount of water taken up and the energy released by the material turned out to be strongly dependent on the water vapor pressure, temperature, and the total system pressure. The results of this study indicate that the application of MgSO4⋅7H2O at atmospheric pressure is problematic for a heat storage system where heat is released above 40°C using a water vapor pressure of 1.3 kPa. However, first experiments performed in a closed system at low pressure indicate that a small amount of heat can be released at 50°C and a water vapor pressure of 1.3 kPa. If a heat storage system has to operate at atmospheric pressure, then the application of MgSO4⋅7H2O for seasonal heat storage is possible for space heating operating at 25°C and a water vapor pressure of 2.1 kPa.
SUMMARYThis paper evaluates the potential of hydrogen (H2) and ammonia (NH3) as carbon‐free fuels. The combustion characteristics and NOx formation in the combustion of H2 and NH3 at different air‐fuel equivalence ratios and initial H2 concentrations in the fuel gas were experimentally studied. NH3 burning velocity improved because of increased amounts of H2 atom in flame with the addition of H2. NH3 burning velocity could be moderately improved and could be applied to the commercial gas engine together with H2 as fuels. H2 has an accelerant role in H2–NH3–air combustion, whereas NH3 has a major effect on the maximum burning velocity of H2–NH3–air. In addition, fuel‐NOx has a dominant role and thermal‐NOx has a negligible role in H2–NH3–air combustion. Thermal‐NOx decreases in H2–NH3–air combustion compared with pure H2–air combustion. NOx concentration reaches its maximum at stoichiometric combustion. Furthermore, H2 is detected at an air‐fuel equivalence ratio of 1.00 for the decomposition of NH3 in flame. Hence, the stoichiometric combustion of H2 and NH3 should be carefully considered in the practical utilization of H2 and NH3 as fuels. H2 as fuel for improving burning performance with moderate burning velocity and NOx emission enables the utilization of H2 and NH3 as promising fuels. Copyright © 2014 John Wiley & Sons, Ltd.
Cancer stem cells (CSCs) are implicated in resistance to ionizing radiation (IR) and chemotherapy. Honokiol, a biphenolic compound has been used in traditional Chinese Medicine for treating various ailments. In this study, we determined the ability of honokiol to enhance the sensitivity of colon CSCs to IR. The combination of honokiol and IR suppressed proliferation and colony formation while inducing apoptosis of colon cancer cells in culture. There were also reduced numbers and size of spheroids, which was coupled with reduced expression of CSC marker protein DCLK1. Flow cytometry studies confirmed that the honokiol-IR combination reduced the number of DCLK1+ cells. In addition, there were reduced levels of activated Notch-1, its ligand Jagged-1 and the downstream target gene Hes-1. Furthermore, expression of components of the Notch-1 activating γ-secretase complex, Presenilin 1, Nicastrin, Pen2 and APH-1 was also suppressed. On the other hand, the honokiol effects were mitigated when the Notch intracellular domain was expressed. To determine the effect of honokiol-IR combination on tumor growth in vivo, nude mice tumor xenografts were administered honokiol intraperitoneally and exposed to IR. The honokiol-IR combination significantly inhibited tumor xenograft growth. In addition, there were reduced levels of DCLK1 and the Notch signaling-related proteins in the xenograft tissues. Together, these data suggest that honokiol is a potent inhibitor of colon cancer growth that targets the stem cells by inhibiting the γ-secretase complex and the Notch signaling pathway. These studies warrant further clinical evaluation for the combination of honokiol and IR for treating colon cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.