African swine fever is a devastating disease of swine caused by African swine fever virus (ASFV). The pathogenesis of the disease remains largely unknown, leaving the uncontrolled spreading of the disease in many countries and regions. Here, we identified the E120R, a structural protein of ASFV, as a key virulent factor and late phase expression protein of the virus. E120R revealed an activity to suppress host antiviral response through blocking IFN-β production, and the 72-73 amino acid sites in the C-terminal domain were essential for this function. E120R interacted with the interferon regulatory factor 3 (IRF3) and interfered with the recruitment of IRF3 to TBK1, which in turn suppressed IRF3 phosphorylation, decreasing interferon production. The recombinant mutant ASFV was further constructed to confirm the claimed mechanism. The ASFV lacking the complete E120R region could not be rescued, whereas the virus could tolerate the deletion of the 72nd and 73rd residuals in the E120R (ASFV E120R-Δ72-73aa). ASFV E120R with the two amino acids deletion failed to interact with IRF3 during ASFV E120R-Δ72-73aa infection, and the viral infection highly activated IRF3 phosphorylation and induced more robust type I interferon production in comparison with its parental ASFV. An unbiased transcriptome-wide analysis of gene expression also confirmed that a considerably higher level of ISGs was detected in ASFV E120R-Δ72-73aa-infected porcine alveolar macrophages (PAMs) than that in the wildtype ASFV-infected PAMs. Together, our findings found a novel mechanism evolved by ASFV to inhibit host antiviral response and provide a new target for guiding the development of ASFV live-attenuated vaccine. IMPORTANCE African swine fever is a highly contagious animal disease affecting pig industry worldwide, which has brought enormous economic losses. The causative agent African swine fever virus (ASFV) infection causes severe immunosuppression during viral infection, attributing to serious clinical manifestation. Therefore, identification of the viral proteins involved in immunosuppression is critical for ASFV vaccine design and development. Here, for the first time, we demonstrated that E120R protein, a structural protein of ASFV, played an important role in suppression of interferon regulatory factor 3 (IRF3) phosphorylation and type I interferon production by binding to IRF3 and blocking the the recruitment of IRF3 to TBK1. Deletion of the crucial binding sites in E120R critically increased interferon response during ASFV infection. This study explored a novel antagonistic mechanism of ASFV, which is critical for guiding the development of ASFV live-attenuated vaccines.
African swine fever is one of the most serious viral diseases caused by African swine fever virus (ASFV). The metabolic changes induced by ASFV infection remain unknown. Here, PAMs infected with ASFV was analyzed by ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 90 metabolites were significantly changed after ASFV infection, and most of them belong to amino acids and TCA cycle intermediates. ASFV infection induced increase of most of amino acids in host during the early stages of infection, and amino acids decreased in the late stages of infection. ASFV infection did not significantly affected glycolysis pathway, whereas it induced the increase of citrate, succinate, α-ketoglutarate, and oxaloacetate levels in the TCA cycle, suggesting that ASFV infection promoted TCA cycle. The activity of aspartate aminotransferase and glutamate production were significantly elevated in ASFV-infected cells and pigs, resulting in reversible transition between TCA cycle and amino acids synthesis. Aspartate, glutamate, and TCA cycle were essential for ASFV replication. In addition, ASFV infection induced an increase in lactate level using lactate dehydrogenase, which led to low expression of IFN-β and increased of ASFV replication. Our data, for the first time, indicated that ASFV infection controls IFN-β production through RIG-I-mediated signaling pathways. These data identified a novel mechanism evolved by ASFV to inhibit host innate immune responses, and will provide insights for development of new preventive or therapeutic strategies targeting the altered metabolic pathways. IMPORTANCE In order to promote viral replication, viruses often cause severe immunosuppression and seize organelles to synthesize a large number of metabolites required for self-replication. African swine fever virus (ASFV) has developed many strategies to evade host innate immune responses. However, the impact of ASFV infection on host cellular metabolism remains unknown. Here, for the first time, we analyzed the metabolomic profiles of ASFV-infected PAMs cells. ASFV infection increased host TCA cycle and amino acids metabolism. Aspartate, glutamate, and TCA cycle promoted ASFV replication. ASFV infection also induced the increase of lactate production to inhibit innate immune responses for self-replication. This study identified novel immune evasion mechanisms utilized by ASFV and provided viewpoints on ASFV-host interactions, which is critical for guiding the design of new prevention strategies against ASFV targeting the altered metabolic pathways.
Cyclic GMP-AMP synthase (cGAS) plays a key role in the innate immune responses to both DNA and RNA virus infection. Here, we found that enterovirus 71 (EV-A71), Seneca Valley virus (SVV), and foot-and-mouth disease virus (FMDV) infection triggered mitochondria damage and mitochondrial DNA (mtDNA) release in vitro and vivo. These responses were mediated by picornavirus 2B proteins which induced mtDNA release during viral replication. SVV infection caused the opening of mitochondrial permeability transition pore (mPTP) and led to voltage-dependent anion channel 1 (VDAC1)- and BCL2 antagonist/killer 1 (Bak) and Bak/BCL2-associated X (Bax)-dependent mtDNA leakage into the cytoplasm, while EV-A71 and FMDV infection induced mPTP opening and resulted in VDAC1-dependent mtDNA release. The released mtDNA bound to cGAS and activated cGAS-mediated antiviral immune response. cGAS was essential for inhibiting EV-A71, SVV, and FMDV replication by regulation of IFN-β production. cGAS deficiency contributed to higher mortality of EV-A71- or FMDV-infected mice. In addition, we found that SVV 2C protein was responsible for decreasing cGAS expression through the autophagy pathway. The 9th and 153rd amino acid sites in 2C were critical for induction of cGAS degradation. Furthermore, we also show that EV-A71, CA16, and EMCV 2C antagonize the cGAS-stimulator of interferon genes (STING) pathway through interaction with STING, and highly conserved amino acids Y155 and S156 were critical for this inhibitory effect. In conclusion, these data reveal novel mechanisms of picornaviruses to block the antiviral effect mediated by the cGAS-STING signaling pathway, which will provide insights for developing antiviral strategies against picornaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.