Medicinal plants have been used world-wide for thousands of years and are widely recognized as having high healing but minor toxic side effects. The scarcity and increasing demand for medicinal plants and their products have promoted the development of artificial cultivation of medicinal plants. Currently, one of the prominent issues in medicinal cultivation systems is the unstable quality of the products. Arbuscular mycorrhiza (AM) affects secondary metabolism and the production of active ingredients of medicinal plants and thus influence the quality of herbal medicines. In this review, we have assembled, analyzed, and summarized the effects of AM symbioses on secondary metabolites of medicinal plants. We conclude that symbiosis of AM is conducive to favorable characteristics of medicinal plants, by improving the production and accumulation of important active ingredients of medicinal plants such as terpenes, phenols, and alkaloids, optimizing the composition of different active ingredients in medicinal plants and ultimately improving the quality of herbal materials. We are convinced that the AM symbiosis will benefit the cultivation of medicinal plants and improve the total yield and quality of herbal materials. Through this review, we hope to draw attention to the status and prospects of, and arouse more interest in, the research field of medicinal plants and mycorrhiza.
The structure of the human Toll-like receptor 3 (TLR3) ectodomain (ECD) was recently solved by x-ray crystallography, leading to a number of models concerning TLR3 function ( The structure revealed four pairs of cysteines that are putatively involved in disulfide bond formation, several residues that are predicted to be involved in dimerization between ECD subunits, and surfaces that could bind to poly(I:C). In addition, there are two loops that protrude from the central solenoid structure of the protein. We examined the recombinant TLR3 ECD for disulfide bond formation, poly(I:C) binding, and protein-protein interaction. We also made over 80 mutations in the residues that could affect these features in the full-length TLR3 and examined their effects in TLR3-mediated NF-B activation. A number of mutations that affected TLR3 activity also affected the ability to act as dominant negative inhibitors of wild type TLR3. Loss of putative RNA binding did not necessarily affect dominant negative activity. All of the results support a model where a dimer of TLR3 is the form that binds RNA and activates signal transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.