Background With the unprecedented morbidity and mortality associated with the COVID-19 pandemic, a vaccine against COVID-19 is urgently needed. We investigated CoronaVac (Sinovac Life Sciences, Beijing, China), an inactivated vaccine candidate against COVID-19, containing inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for its safety, tolerability and immunogenicity. Methods In this randomised, double-blind, placebo-controlled, phase 1/2 clinical trial, healthy adults aged 18-59 years were recruited from the community in Suining County of Jiangsu province, China. Adults with SARS-CoV-2 exposure or infection history, with axillary temperature above 37•0°C, or an allergic reaction to any vaccine component were excluded. The experimental vaccine for the phase 1 trial was manufactured using a cell factory process (CellSTACK Cell Culture Chamber 10, Corning, Wujiang, China) , whereas those for the phase 2 trial were produced through a bioreactor process (ReadyToProcess WAVE 25, GE, Umea, Sweden). The phase 1 trial was done in a dose-escalating manner. At screening, participants were initially separated (1:1), with no specific randomisation, into two vaccination schedule cohorts, the days 0 and 14 vaccination cohort and the days 0 and 28 vaccination cohort, and within each cohort the first 36 participants were assigned to block 1 (low dose CoronaVac [3 μg per 0•5 mL of aluminium hydroxide diluent per dose) then another 36 were assigned to block 2 (high-dose Coronavc [6 μg per 0•5 mL of aluminium hydroxide diluent per dse]). Within each block, participants were randomly assigned (2:1), using block randomisation with a block size of six, to either two doses of CoronaVac or two doses of placebo. In the phase 2 trial, at screening, participants were initially separated (1:1), with no specific randomisation, into the days 0 and 14 vaccination cohort and the days 0 and 28 vaccination cohort, and participants were randomly assigned (2:2:1), using block randomisation with a block size of five, to receive two doses of either low-dose CoronaVac, high-dose CoronaVac, or placebo. Participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was adverse reactions within 28 days after injection in all participants who were given at least one dose of study drug (safety population). The primary immunogenic outcome was seroconversion rates of neutralising antibodies to live SARS-CoV-2 at day 14 after the last dose in the days 0 and 14 cohort, and at day 28 after the last dose in the days 0 and 28 cohort in participants who completed their allocated two-dose vaccination schedule (per-protocol population). This trial is registered with ClinicalTrials.gov, NCT04352608, and is closed to accrual. Findings Between April 16 and April 25, 2020, 144 participants were enrolled in the phase 1 trial, and between May 3 and May 5, 2020, 600 participants were enrolled in the phase 2 trial. 743 participants received at least one dose of investigational product (n=143 for ph...
IMPORTANCE Dietary supplements marketed for male fertility commonly contain folic acid and zinc based on limited prior evidence for improving semen quality. However, no large-scale trial has examined the efficacy of this therapy for improving semen quality or live birth.OBJECTIVE To determine the effect of daily folic acid and zinc supplementation on semen quality and live birth. DESIGN, SETTING, AND PARTICIPANTSThe Folic Acid and Zinc Supplementation Trial was a multicenter randomized clinical trial. Couples (n = 2370; men aged Ն18 years and women aged 18-45 years) planning infertility treatment were enrolled at 4 US reproductive endocrinology and infertility care study centers between June 2013 and December 2017. The last 6-month study visit for semen collection occurred during August 2018, with chart abstraction of live birth and pregnancy information completed during April 2019.INTERVENTIONS Men were block randomized by study center and planned infertility treatment (in vitro fertilization, other treatment at a study site, and other treatment at an outside clinic) to receive either 5 mg of folic acid and 30 mg of elemental zinc (n = 1185) or placebo (n = 1185) daily for 6 months. MAIN OUTCOMES AND MEASURESThe co-primary outcomes were live birth (resulting from pregnancies occurring within 9 months of randomization) and semen quality parameters (sperm concentration, motility, morphology, volume, DNA fragmentation, and total motile sperm count) at 6 months after randomization. RESULTS Among 2370 men who were randomized (mean age, 33 years), 1773 (75%) attended the final 6-month study visit. Live birth outcomes were available for all couples, and 1629 men (69%) had semen available for analysis at 6 months after randomization. Live birth was not significantly different between treatment groups (404 [34%] in the folic acid and zinc group and 416 [35%] in the placebo group; risk difference, −0.9% [95% CI, −4.7% to 2.8%]). Most of the semen quality parameters (sperm concentration, motility, morphology, volume, and total motile sperm count) were not significantly different between treatment groups at 6 months after randomization. A statistically significant increase in DNA fragmentation was observed with folic acid and zinc supplementation (mean of 29.7% for percentage of DNA fragmentation in the folic acid and zinc group and 27.2% in the placebo group; mean difference, 2.4% [95% CI, 0.5% to 4.4%]). Gastrointestinal symptoms were more common with folic acid and zinc supplementation compared with placebo (abdominal discomfort or pain: 66 [6%] vs 40 [3%], respectively; nausea: 50 [4%] vs 24 [2%]; and vomiting: 32 [3%] vs 17 [1%]).CONCLUSIONS AND RELEVANCE Among a general population of couples seeking infertility treatment, the use of folic acid and zinc supplementation by male partners, compared with placebo, did not significantly improve semen quality or couples' live birth rates. These findings do not support the use of folic acid and zinc supplementation by male partners in the treatment of infertility.
Background Sepsis is characterized by a complex immune response. This meta-analysis evaluated the clinical effectiveness of intravenous IgM-enriched immunoglobulin (IVIgGM) in patients with sepsis and septic shock. Methods Four databases, PubMed, the Cochrane Library, the ISI Web of Knowledge, and Embase, were systematically searched from inception to June 2018 to update the 2013 edition of the Cochrane review by two investigators, who independently selected studies, extracted relevant data, and evaluated study quality. Data were subjected to a meta-analysis and trial sequential analysis (TSA) for the primary and secondary outcomes. Level of evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scale. Results Nineteen studies comprising 1530 patients were included in this meta-analysis. Pooled analyses showed that the use of IVIgGM reduced the mortality risk of septic patients (relative risk 0.60; 95% confidence interval [CI] 0.52–0.69, I 2 = 0%). TSA showed that IVIgGM had a significant effect on mortality. Additionally, the meta-analysis suggested that use of IVIgGM shortened length of mechanical ventilation (mean difference − 3.16 days; 95% CI − 5.71 to − 0.61 days) and did not shorten length of stay in the intensive care unit (mean difference − 0.38 days; 95% CI − 3.55 to 2.80 days). The GRADE scale showed that the certainty of the body of evidence was low for both benefits and IVIgGM. Conclusion Administration of IVIgGM to adult septic patients may be associated with reduced mortality. Treatment effects tended to be smaller or less consistent when including only those studies deemed adequate for each indicator. The available evidence is not clearly sufficient to support the widespread use of IVIgGM in the treatment of sepsis. Trial registration PROSPERO registration number: CRD42018084120. Registered on 11 February 2018. Electronic supplementary material The online version of this article (10.1186/s13613-019-0501-3) contains supplementary material, which is available to authorized users.
Here, we investigated the role of zinc ribbon domaincontaining 1 (ZNRD1) in multidrug resistance (MDR) of leukemia cells and the possible underlying mechanisms. ZNRD1 was found overexpressed in the vincristineinduced MDR leukemia cell HL-60/vincristine moreso than its parental cell HL-60. Up-regulation of ZNRD1 expression could confer resistance of both P-glycoprotein (P-gp)-related and P-gp-nonrelated drugs on HL-60 cells and suppress Adriamycin-induced apoptosis accompanied by decreased accumulation and increased releasing amount of Adriamycin. ZNRD1 could significantly upregulate the expression of P-gp, Bcl-2, and the transcription of the MDR1 gene but not alter the expression of MDR-associated protein, glutathione S-transferase activity, or intracellular glutathione content in leukemia cells. In addition, inhibition of ZNRD1 expression by RNA interference or P-gp inhibitor could partially reverse ZNRD1-mediated MDR. The further study of the biological functions of ZNRD1 may be helpful for understanding the mechanisms of MDR of leukemia and developing possible strategies to treat leukemia. [Mol Cancer Ther 2005;4(12):1936 -42]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.