The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.
Goldfish have been subjected to over 1,000 y of intensive domestication and selective breeding. In this report, we describe a high-quality goldfish genome (2n = 100), anchoring 95.75% of contigs into 50 pseudochromosomes. Comparative genomics enabled us to disentangle the two subgenomes that resulted from an ancient hybridization event. Resequencing 185 representative goldfish variants and 16 wild crucian carp revealed the origin of goldfish and identified genomic regions that have been shaped by selective sweeps linked to its domestication. Our comprehensive collection of goldfish varieties enabled us to associate genetic variations with a number of well-known anatomical features, including features that distinguish traditional goldfish clades. Additionally, we identified a tyrosine-protein kinase receptor as a candidate causal gene for the first well-known case of Mendelian inheritance in goldfish—the transparent mutant. The goldfish genome and diversity data offer unique resources to make goldfish a promising model for functional genomics, as well as domestication.
Multidrug resistance (MDR) to chemotherapeutic drugs is a formidable barrier to the success of cancer chemotherapy. Expressions of ATP-binding cassette (ABC) transporters contribute to clinical MDR phenotype. In this study, we found that afatinib, a small molecule tyrosine kinase inhibitor (TKI) targeting EGFR, HER-2 and HER-4, reversed the chemoresistance mediated by ABCG2 in vitro, but had no effect on that mediated by multidrug resistance protein ABCB1 and ABCC1. In addition, afatinib, in combination with topotecan, significantly inhibited the growth of ABCG2-overexpressing cell xenograft tumors in vivo. Mechanistic investigations exhibited that afatinib significantly inhibited ATPase activity of ABCG2 and downregulated expression level of ABCG2, which resulted in the suppression of efflux activity of ABCG2 in parallel to the increase of intracellular accumulation of ABCG2 substrate anticancer agents. Taken together, our findings may provide a new and useful combinational therapeutic strategy of afatinib with chemotherapeutical drug for the patients with ABCG2 overexpressing cancer cells.
The successful application of heterosis in hybrid rice has dramatically improved rice productivity, but the genetic mechanism for heterosis in the hybrid rice remains unclear. In this study, we generated two populations of rice F1hybrids with present-day commercial hybrid parents, genotyped the parents with 50k SNP chip and genome resequencing, and recorded the phenotype of ∼2,000 hybrids at three field trials. By integrating these data with the collected genotypes of ∼4,200 rice landraces and improved varieties that were reported previously, we found that the male and female parents have different levels of genome introgressions from other rice subpopulations, includingindica,aus, andjaponica, therefore shaping heterotic loci in the hybrids. Among the introgressed exogenous genome, we found that heterotic loci, includingGhd8/DTH8,Gn1a, andIPA1existed in wild rice, but were significantly divergently selected among the rice subpopulations, suggesting these loci were subject to environmental adaptation. During modern rice hybrid breeding, heterotic loci were further selected by removing loci with negative effect and fixing loci with positive effect and pyramid breeding. Our results provide insight into the genetic basis underlying the heterosis of elite hybrid rice varieties, which could facilitate a better understanding of heterosis and rice hybrid breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.