Background The long non-coding RNA PVT1 (lncRNA PVT1) has been reported to act as an oncogenic regulator of several cancers. However, its expression and function in gallbladder cancer (GBC) remain largely unknown. Methods In situ hybridization (ISH) and quantitative real-time PCR (qPCR) were performed to detect the expression of PVT1 and miR-143 in GBC tissues and cell lines. Immunohistochemistry (IHC) assays were performed to assess the expression of the hexokinase 2 (HK2) protein. The relationships among PVT1, miR-143 and HK2 were evaluated using dual-luciferase reporter, RNA immunoprecipitation (RIP) and biotin pull-down assays. The biological functions of PVT1, miR-143 and HK2 in GBC cells were explored with cell counting kit 8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU), colony formation, transwell, wound healing and glucose metabolism assays in vitro. For in vivo experiments, a xenograft model was used to investigate the effects of PVT1 and HK2 on GBC. Results PVT1 was upregulated in GBC tissues and cells and was positively associated with malignancies and worse overall survival. PVT1 knockdown inhibited cell proliferation, migration, and invasion in vitro and restrained tumor growth in vivo. Further studies demonstrated that PVT1 positively regulated HK2 expression via its competing endogenous RNA (ceRNA) activity on miR-143. Additionally, HK2 expression and function were positively correlated with PVT1. Furthermore, we observed that the PVT1/miR-143/HK2 axis promoted cell proliferation and metastasis by regulating aerobic glucose metabolism in GBC cells. Conclusions The results of our study reveal a potential ceRNA regulatory pathway in which PVT1 modulates HK2 expression by competitively binding to endogenous miR-143 in GBC cells, which may provide new insights into novel molecular therapeutic targets for GBC. Electronic supplementary material The online version of this article (10.1186/s12943-019-0947-9) contains supplementary material, which is available to authorized users.
Patterning of upconversion luminescent materials has been widely used for anti-counterfeit and security applications, where the preferred method should be easy, fast, multicolor, high-throughput and designable. However, conventional patterning methods are complex and inflexible. Here, we report a digital and flexible inkjet printing based approach for producing high-resolution and high-luminescence anti-counterfeit patterns. We successfully printed different multicolor luminescent patterns by inkjet printing of upconversion nanoparticles with controlled and uniform luminescence intensity through optimizing the inks and substrates. Combined with another downconversion luminescent material, we achieved two different patterns in the same area, which show up separately under excitation by different wavelength laser sources. The developed technology is promising to use one single substrate for carrying abundant information by printing multilayer patterns composed of luminescent materials with different excitation light sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.