Landslides, like other natural hazards, such as avalanches, floods, and debris flows, may result in a lot of property damage and human casualties. The volume of landslide deposits is a key parameter for landslide studies and disaster relief. Using remote sensing and digital terrain model (DTM) data, this paper analyzes errors that can occur in calculating landslide volumes using conventional models. To improve existing models, the mechanisms and laws governing the material deposited by landslides are studied and then the mass balance principle and mass balance line are defined. Based on these ideas, a novel and improved model (Mass Balance Model, MBM) is proposed. By using a parameter called the -height adaptor‖, MBM translates the volume calculation into an automatic search for the mass balance line within the scope of the landslide. Due to the use of mass balance constraints and the height adaptor, MBM is much more effective and reliable. A test of MBM was carried out for the case of a typical landslide, triggered by the Wenchuan Earthquake of 12 May 2008.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.