Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape, and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains, or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcriptional activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells.
Although genetic factors contribute to almost half of all deafness cases, treatment options for genetic deafness are limited1–5. We developed a genome editing approach to target a dominantly inherited form of genetic deafness. Here we show that cationic lipid-mediated in vivo delivery of Cas9:guide RNA complexes can ameliorate hearing loss in a mouse model of human genetic deafness. We designed and validated in vitro and in primary fibroblasts genome editing agents that preferentially disrupt the dominant deafness-associated allele in the Tmc1 (transmembrane channel-like 1) Beethoven (Bth) mouse model, even though the mutant Bth allele differs from the wild-type allele at only a single base pair. Injection of Cas9:guide RNA:lipid complexes targeting the Bth allele into the cochlea of neonatal Bth/+ mice substantially reduced progressive hearing loss. We observed higher hair cell survival rates and lower auditory brainstem response (ABR) thresholds in injected ears compared with uninjected ears or ears injected with complexes that target an unrelated gene. Enhanced acoustic reflex responses were observed among injected compared to uninjected Bth/+ animals. These findings suggest protein:RNA complex delivery of target gene-disrupting agents in vivo as a potential strategy for the treatment of some autosomal dominant hearing loss diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.