The Hippo pathway has been implicated in suppressing tissue overgrowth and tumor formation by restricting the oncogenic activity of YAP. However, transcriptional regulators that inhibit YAP activity have not been well studied. Here, we uncover clinical importance for VGLL4 in gastric cancer suppression and find that VGLL4 directly competes with YAP for binding TEADs. Importantly, VGLL4's tandem Tondu domains are not only essential but also sufficient for its inhibitory activity toward YAP. A peptide mimicking this function of VGLL4 potently suppressed tumor growth in vitro and in vivo. These findings suggest that disruption of YAP-TEADs interaction by a VGLL4-mimicking peptide may be a promising therapeutic strategy against YAP-driven human cancers.
Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm−2, resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.
f Serotyping forms the basis of national and international surveillance networks for Salmonella, one of the most prevalent foodborne pathogens worldwide (1-3). Public health microbiology is currently being transformed by whole-genome sequencing (WGS), which opens the door to serotype determination using WGS data. SeqSero (www.denglab.info/SeqSero) is a novel Webbased tool for determining Salmonella serotypes using high-throughput genome sequencing data. SeqSero is based on curated databases of Salmonella serotype determinants (rfb gene cluster, fliC and fljB alleles) and is predicted to determine serotype rapidly and accurately for nearly the full spectrum of Salmonella serotypes (more than 2,300 serotypes), from both raw sequencing reads and genome assemblies. The performance of SeqSero was evaluated by testing (i) raw reads from genomes of 308 Salmonella isolates of known serotype; (ii) raw reads from genomes of 3,306 Salmonella isolates sequenced and made publicly available by GenomeTrakr, a U.S. national monitoring network operated by the Food and Drug Administration; and (iii) 354 other publicly available draft or complete Salmonella genomes. We also demonstrated Salmonella serotype determination from raw sequencing reads of fecal metagenomes from mice orally infected with this pathogen. SeqSero can help to maintain the well-established utility of Salmonella serotyping when integrated into a platform of WGS-based pathogen subtyping and characterization. Salmonella is the most prevalent foodborne pathogen in the United States, causing 1.2 million cases of illness annually and the largest health burden among all bacterial pathogens (4). The U.S. National Salmonella Surveillance System has been built upon serotyping in public health laboratories, a subtyping method traditionally performed through the agglutination of Salmonella cells with specific antisera that detect lipopolysaccharide O antigen and flagellar H antigens. Specific combinations of O and H antigenic types represent serotypes (or serovars). More than 2,500 Salmonella serotypes have been described in the White-Kauffmann-Le Minor scheme (5, 6). The phenotypic determination of serotypes is labor-intensive and time-consuming (taking at least 2 days), which has led to the development of genetic methods for serotype determination (7,8). These methods generally use two categories of targets for serotype determination: (i) indirect targets, requiring the use of random surrogate genomic markers associated with particular serotypes, and (ii) direct targets, requiring the use of genetic determinants of serotypes, including the rfb gene cluster responsible for somatic (O) group synthesis (9, 10) and the fliC (11) and fljB (12) genes encoding the two flagellar antigens present in Salmonella. The latter approach has the advantage of determining serotypes using the same markers as the phenotypic method, providing continuity between the serotypes determined by phenotypic and genetic markers (13,14). While this approach may result in distinct genetic lineages bei...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.