Axon-derived molecules are temporally and spatially required as positive or negative signals to coordinate oligodendrocyte differentiation. Increasing evidence suggests that, in addition to the inhibitory Jagged1/Notch1 signaling cascade, other pathways act via Notch to mediate oligodendrocyte differentiation. The GPI-linked neural cell recognition molecule F3/contactin is clustered during development at the paranodal region, a vital site for axoglial interaction. Here, we show that F3/contactin acts as a functional ligand of Notch. This trans-extracellular interaction triggers gamma-secretase-dependent nuclear translocation of the Notch intracellular domain. F3/Notch signaling promotes oligodendrocyte precursor cell differentiation and upregulates the myelin-related protein MAG in OLN-93 cells. This can be blocked by dominant negative Notch1, Notch2, and two Deltex1 mutants lacking the RING-H2 finger motif, but not by dominant-negative RBP-J or Hes1 antisense oligonucleotides. Expression of constitutively active Notch1 or Notch2 does not upregulate MAG. Thus, F3/contactin specifically initiates a Notch/Deltex1 signaling pathway that promotes oligodendrocyte maturation and myelination.
Contactin (also known as F3, F11) is a surface glycoprotein that has significant homology with the beta2 subunit of voltage-gated Na(+) channels. Contactin and Na(+) channels can be reciprocally coimmunoprecipitated from brain homogenates, indicating association within a complex. Cells cotransfected with Na(+) channel Na(v)1.2alpha and beta1 subunits and contactin have threefold to fourfold higher peak Na(+) currents than cells with Na(v)1.2alpha alone, Na(v)1.2/beta1, Na(v)1.2/contactin, or Na(v)1.2/beta1/beta2. These cells also have a correspondingly higher saxitoxin binding, suggesting an increased Na(+) channel surface membrane density. Coimmunoprecipitation of different subunits from cell lines shows that contactin interacts specifically with the beta1 subunit. In the PNS, immunocytochemical studies show a transient colocalization of contactin and Na(+) channels at new nodes of Ranvier forming during remyelination. In the CNS, there is a particularly high level of colocalization of Na(+) channels and contactin at nodes both during development and in the adult. Contactin may thus significantly influence the functional expression and distribution of Na(+) channels in neurons.
Apical dendrites of pyramidal neurons in the neocortex have a stereotypic orientation that is important for neuronal function. Neural recognition molecule Close Homolog of L1 (CHL1) has been shown to regulate oriented growth of apical dendrites in the mouse caudal cortex. Here we show that CHL1 directly associates with NB-3, a member of the F3/contactin family of neural recognition molecules, and enhances its cell surface expression. Similar to CHL1, NB-3 exhibits high-caudal to low-rostral expression in the deep layer neurons of the neocortex. NB-3-deficient mice show abnormal apical dendrite projections of deep layer pyramidal neurons in the visual cortex. Both CHL1 and NB-3 interact with protein tyrosine phosphatase a (PTPa) and regulate its activity. Moreover, deep layer pyramidal neurons of PTPa-deficient mice develop misoriented, even inverted, apical dendrites. We propose a signaling complex in which PTPa mediates CHL1 and NB-3-regulated apical dendrite projection in the developing caudal cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.