We performed a genome-wide association study of esophageal squamous cell carcinoma (ESCC) by genotyping 1,077 individuals with ESCC and 1,733 control subjects of Chinese Han descent. We selected 18 promising SNPs for replication in an additional 7,673 cases of ESCC and 11,013 control subjects of Chinese Han descent and 303 cases of ESCC and 537 control subjects of Chinese Uygur-Kazakh descent. We identified two previously unknown susceptibility loci for ESCC: PLCE1 at 10q23 (P(Han combined for ESCC) = 7.46 x 10(-56), odds ratio (OR) = 1.43; P(Uygur-Kazakh for ESCC) = 5.70 x 10(-4), OR = 1.53) and C20orf54 at 20p13 (P(Han combined for ESCC) = 1.21 x 10(-11), OR = 0.86; P(Uygur-Kazakh for ESCC) = 7.88 x 10(-3), OR = 0.66). We also confirmed association in 2,766 cases of gastric cardia adenocarcinoma cases and the same 11,013 control subjects (PLCE1, P(Han for GCA) = 1.74 x 10(-39), OR = 1.55 and C20orf54, P(Han for GCA) = 3.02 x 10(-3), OR = 0.91). PLCE1 and C20orf54 have important biological implications for both ESCC and GCA. PLCE1 might regulate cell growth, differentiation, apoptosis and angiogenesis. C20orf54 is responsible for transporting riboflavin, and deficiency of riboflavin has been documented as a risk factor for ESCC and GCA.
Accumulating evidence shows that microRNAs, functioning as either oncogenes or tumour suppressors by negatively regulating downstream target genes that are actively involved in tumour initiation and progression, may be promising biomarkers and therapy targets. Data mining through a microRNA chip database indicated that let-7c may be associated with tumour metastasis. Here, we confirmed that down-regulation of let-7c in primary cancer tissues was significantly associated with metastases, advanced TNM stages and poor survival of colorectal cancer patients. Moreover, ectopic expression of let-7c in a highly metastatic Lovo cell line remarkably suppressed cell migration and invasion in vitro by the down-regulation of K-RAS, MMP11 and PBX3, as well as tumour growth and metastases in vivo, whereas inhibition of let-7c in low-metastatic HT29 cells increased cell motility and invasion by the enhanced gene expression of K-RAS, MMP11 and PBX3. Interestingly, the luciferase reporters' activities with the 3'-UTRs of K-RAS, MMP11 and PBX3 were inhibited significantly by let-7c. Importantly, rescue experiments involving the over-expression of these genes without their 3'-UTRs completely reversed the effects of let-7c on tumour metastasis, both in vitro and in vivo. Finally, the levels of let-7c were inversely correlated with those of MMP11 and PBX3, but not with those of K-RAS. Taken together, these results demonstrate that let-7c, apart from its tumour growth suppression role, also functions as a tumour metastasis suppressor in colorectal cancer by directly destabilizing the mRNAs of MMP11 and PBX3 at least.
Neurofibromatosis type 1 associates with multiple neoplasms, and the Schwann cell tumor neurofibroma is the most prevalent. A hallmark feature of neurofibroma is mast cell infiltration, which is recruited by chemoattractant stem cell factor (SCF) and has been suggested to sustain neurofibroma tumorigenesis. In the present study, we use new, genetically engineered Scf mice to decipher the contributions of tumor-derived SCF and mast cells to neurofibroma development. We demonstrate that mast cell infiltration is dependent on SCF from tumor Schwann cells. However, removal of mast cells by depleting the main SCF source only slightly affects neurofibroma progression. Other inflammation signatures show that all neurofibromas are associated with high levels of macrophages regardless of Scf status. These findings suggest an active inflammation in neurofibromas and partly explain why mast cell removal alone is not sufficient to relieve tumor burden in this experimental neurofibroma model. Furthermore, we show that plexiform neurofibromas are highly associated with injury-prone spinal nerves that are close to flexible vertebras. In summary, our study details the role of inflammation in neurofibromagenesis. Our data indicate that prevention of inflammation and possibly also nerve injury at the observed tumor locations are therapeutic approaches for neurofibroma prophylaxis and that such treatment should be explored.
Stem cells are under strict regulation by both intrinsic factors and the microenvironment. There is increasing evidence that many cancers initiate through acquisition of genetic mutations (loss of intrinsic control) in stem cells or their progenitors, followed by alterations of the surrounding microenvironment (loss of extrinsic control). In Neurofibromatosis Type 1 (NF1), deregulation of Ras signaling results in development of multiple neurofibromas, complex tumors of the peripheral nerves. Neurofibromas arise from the Schwann cell lineage following loss of function at the NF1 locus, which initiates a cascade of interactions with other cell types in the microenvironment as well as additional cell autonomous modifications. In this study, we sought to identify whether a temporal “window of opportunity” exists during which cells of the Schwann cell lineage can give rise to neurofibromas following loss of NF1. We show that acute loss of NF1 in both embryonic and adult Schwann cells can lead to neurofibroma formation. However, the embryonic period when Schwann cell precursors and immature Schwann cells are most abundant coincides with enhanced susceptibility to plexiform neurofibroma tumorigenesis. This model has important implications for understanding early cellular events that dictate neurofibroma development, as well as for the development of novel therapies targeting these tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.