Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide.
It has become increasingly clear that gut bacteria play vital roles in the development, nutrition, immunity, and overall fitness of their eukaryotic hosts. We conducted the present study to investigate the effects of gut microbiota disruption on the honey bee’s immune responses to infection by the microsporidian parasite Nosema ceranae. Newly emerged adult workers were collected and divided into four groups: Group I—no treatment; Group II—inoculated with N. ceranae, Group III—antibiotic treatment, and Group IV—antibiotic treatment after inoculation with N. ceranae. Our study showed that Nosema infection did not cause obvious disruption of the gut bacterial community as there was no significant difference in the density and composition of gut bacteria between Group I and Group II. However, the elimination of gut bacteria by antibiotic (Groups III and IV) negatively impacted the functioning of the honey bees’ immune system as evidenced by the expression of genes encoding antimicrobial peptides abaecin, defensin1, and hymenoptaecin that showed the following ranking: Group I > Group II > Group III > Group IV. In addition, significantly higher Nosema levels were observed in Group IV than in Group II, suggesting that eliminating gut bacteria weakened immune function and made honey bees more susceptible to Nosema infection. Based on Group IV having displayed the highest mortality rate among the four experimental groups indicates that antibiotic treatment in combination with stress, associated with Nosema infection, significantly and negatively impacts honey bee survival. The present study adds new evidence that antibiotic treatment not only leads to the complex problem of antibiotic resistance but can impact honey bee disease resistance. Further studies aimed at specific components of the gut bacterial community will provide new insights into the roles of specific bacteria and possibly new approaches to improving bee health.
A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.
PurposeTo evaluate the competing reaction of isocyanate with cellulose and water which can provide direction for further studies on bonding and curing reactions of isocyanate with wood.Design/methodology/approachTwo modern analytical techniques, Fourier transform infra‐red (FTIR) and X‐ray photoelectron spectroscopy (XPS), were used. The FTIR was used to identify the products of the reaction of phenyl isocyanate (PI) with alcohol, water, and cellulose; while the XPS was used to evaluate the proportions of isocyanate that reacted with water or cellulose when PI reacted with cellulose at different moisture contents (MCs), respectively.FindingsMethods for the IR identifications of reaction results of PI with n‐propanol, water, and cellulose, in which the reactions of PI with water and PI with cellulose resulted in N,N′‐diphenylurea and carbamate, respectively, were developed. It was discovered that the extent of reaction of isocyanate and cellulose decreased with increasing cellulose MC, and 92.98 per cent isocyanate reacted with water when 9.78 per cent MC was reached. It was confirmed that the products of the PI reaction were distributed mainly on the surface of the cellulose particles.Research limitations/implicationsThe study only focused on the reaction of PI. However, the industrial isocyanates, e.g. methylene diphenyl diisocyanate (MDI), polymerized methylene diphenyl diisocyanate (p‐MDI) that have complexities in chemical structures and components, make analyses with FTIR and XPS impossible.Practical implicationsThe paper provides some instructive information about the isocyanate reaction that will help understanding the characteristics of isocyanate and guiding the design of technology bonding isocyanate to fibre, wood, etc.Originality/valueThe application of FTIR and XPS for evaluating the reaction of isocyanate with cellulose having different MCs was novel and may be used as a reference for other relevant studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.