The LHCb Collaboration announced two pentaquark-like structures in the J/ψ p invariant mass distribution. We show that the current information on the narrow structure at 4.45 GeV is compatible with kinematical effects of the rescattering from χc1 p to J/ψ p: First, it is located exactly at the χc1 p threshold. Second, the mass of the four-star well-established Λ(1890) is such that a leading Landau singularity from a triangle diagram can coincidentally appear at the χc1 p threshold, and third, there is a narrow structure at the χc1 p threshold but not at the χc0 p and χc2 p thresholds. In order to check whether that structure corresponds to a real exotic resonance, one can measure the process Λ 0 b → K − χc1 p. If the Pc(4450) structure exists in the χc1 p invariant mass distribution as well, then the structure cannot be just a kinematical effect but is a real resonance, otherwise, one cannot conclude the Pc(4450) to be another exotic hadron. In addition, it is also worthwhile to measure the decay Υ(1S) → J/ψ pp: a narrow structure at 4.45 GeV but not at the χc0 p and χc2 p thresholds would exclude the possibility of a pure kinematical effect. *
Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a polarization of ∼80%) and protons (with a polarization of ∼70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3) × 1033 cm−2 · s−1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.
Advanced stretchable electronic sensors with a complex structure place higher requirements on the mechanical properties and manufacturing process of the stretchable substrate materials. Herein, three kinds of polyurethane acrylate oligomers were synthesized successfully and mixed with a commercial acrylate monomer (isobornyl acrylate) to prepare photocurable resins with a low viscosity for a digital light processing three-dimensional (3D) printer without custom equipment. Results showed that the resin containing poly(tetrahydrofuran) units (PPTMGA-40) exhibited optimal mechanical properties and shape recoverability. The tensile strength and elongation at break of PPTMGA-40 were 15.7 MPa and 414.3%, respectively. The unprecedented fatigue resistance of PPTMGA-40 allowed it to withstand 100 compression cycles at 80% strain without fracture. The transmittance of PPTMGA-40 reached 89.4% at 550 nm, showing high transparency. An ionic hydrogel was coated on the surface of 3D-printed structures to fabricate stretchable sensors, and their conductivity, transparency, and mechanical performance were characterized. A robust piezoresistive strain sensor with a high strength (∼6 MPa) and a wearable finger guard sensor were fabricated, demonstrating that this hydrogel-elastomer system can meet the requirements of applications for advanced stretchable electronic sensors and expand the usage scope.
The triboelectric nanogenerator (TENG) is a promising energy harvesting technology that can convert mechanical energy into electricity and can be used as self-powered active sensors. However, previous studies are mostly carried out at room temperature without considering the temperature effect on the electrical performance of TENGs, which is critical for the application of electronics powered by TENGs in different regions in the world. In the present work, a TENG that worked in the single-electrode and contactseparation mode is utilized to reveal the influence of environment temperature on the electrical performance of TENG. The electrical performance of the TENG shows a decreasing tendency, as the temperature rises from À20 to 150 C, which is controlled by the temperature-induced changes in the ability of storing and gaining electrons for polytetrafluoroethylene (PTFE). The storing electron ability change of PTFE is attributed to two aspects: one is the reduction of relative permittivity of PTFE sheet as the temperature increases, and the other is the variations of effective defects such as the escape of trapped charges in shallow traps and surface oxidation under the effect of temperature perturbation. This work can provide useful information for the application of TENG in both electric power generation and selfpowered sensors in the harsh environment. Experimental SectionFabrication of the TENG: The TENG in this work was made up of a Al foil (55 Â 55 Â 1 mm), polyethylene terephthalate (PET) insulation tapes, PTFE sheets (55 Â 55 Â 3 mm). The PTFE sheet is a commercial product
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.